Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1990 Jan 1;110(1):71–79. doi: 10.1083/jcb.110.1.71

Extracellular matrix allows PC12 neurite elongation in the absence of microtubules

PMCID: PMC2115996  PMID: 2153148

Abstract

Several groups have shown that PC12 will extend microtubule-containing neurites on extracellular matrix (ECM) with no lag period in the absence of nerve growth factor. This is in contrast to nerve growth factor (NGF)-induced neurite outgrowth that occurs with a lag period of several days. During this lag period, increased synthesis or activation of assembly-promoting microtubule-associated proteins (MAPs) occurs and is apparently required for neurite extension. We investigated the growth and microtubule (MT) content of PC12 neurites grown on ECM in the presence or absence of inhibitors of neurite outgrowth. On ECM, neurites of cells with or without prior exposure to NGF contain a normal density of MTs, but frequently contain unusual loops of MTs in their termini that may indicate increased MT assembly. On ECM, neurites extend from PC12 cells in the presence of 10 microM LiCl at significantly higher frequency than on polylysine. On other substrates, LiCl inhibits neurite outgrowth, apparently by inhibiting phosphorylation of particular MAPs (Burstein, D. E., P. J. Seeley, and L. A. Greene. 1985. J. Cell Biol. 101:862-870). Although 35-45% of 60 Li(+)-neurites examined were found to contain a normal array of MTs, 25- 30% were found to have a MT density approximately 15% of normal. The remaining 30% of these neurites were found to be nearly devoid of MTs, containing only occasional, ambiguous, short tubular elements. We also found that neurites would extend on ECM in the presence of the microtubule depolymerizing drug, nocodazole. At 0.1 micrograms/ml nocodazole, cells on ECM produce neurites that contain a normal density of MTs. This is in contrast to the lack of neurite outgrowth and retraction of extant neurites that this dose produces in cells grown on polylysine. At 0.2 microgram/ml nocodazole, neurites again grew out in substantial number and four of five neurites examined ultrastructurally were found to be completely devoid of microtubules. We interpret these results by postulating that growth on ECM relieves the need for MTs to serve as compressive supports for neurite tension (Dennerll, T. J., H. C. Joshi, U. L. Steel, R. E. Buxbaum, and S. R. Heidemann. 1988. J. Cell Biol. 107:665). Because compression destabilizes MTs and favors disassembly, this would tend to increase MT assembly relative to other conditions, as we found. Additionally, if MTs are not needed as compressive supports, neurites could grow out in their absence, as we also observed.

Full Text

The Full Text of this article is available as a PDF (2.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baas P. W., Sinclair G. I., Heidemann S. R. Role of microtubules in the cytoplasmic compartmentation of neurons. Brain Res. 1987 Sep 8;420(1):73–81. doi: 10.1016/0006-8993(87)90241-1. [DOI] [PubMed] [Google Scholar]
  2. Bellot F., Luis J., el Battari A., Secchi J., Cau P., Marvaldi J., Pichon J. Extracellular material secreted by human colonic adenocarcinoma cell lines promotes spreading in serum-free medium and induces neurite outgrowth of PC-12 cells. Int J Cancer. 1985 Nov 15;36(5):609–615. doi: 10.1002/ijc.2910360515. [DOI] [PubMed] [Google Scholar]
  3. Black M. M., Aletta J. M., Greene L. A. Regulation of microtubule composition and stability during nerve growth factor-promoted neurite outgrowth. J Cell Biol. 1986 Aug;103(2):545–557. doi: 10.1083/jcb.103.2.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Black M. M., Baas P. W. The basis of polarity in neurons. Trends Neurosci. 1989 Jun;12(6):211–214. doi: 10.1016/0166-2236(89)90124-0. [DOI] [PubMed] [Google Scholar]
  5. Brugg B., Matus A. PC12 cells express juvenile microtubule-associated proteins during nerve growth factor-induced neurite outgrowth. J Cell Biol. 1988 Aug;107(2):643–650. doi: 10.1083/jcb.107.2.643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burstein D. E., Greene L. A. Evidence for RNA synthesis-dependent and -independent pathways in stimulation of neurite outgrowth by nerve growth factor. Proc Natl Acad Sci U S A. 1978 Dec;75(12):6059–6063. doi: 10.1073/pnas.75.12.6059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Burstein D. E., Seeley P. J., Greene L. A. Lithium ion inhibits nerve growth factor-induced neurite outgrowth and phosphorylation of nerve growth factor-modulated microtubule-associated proteins. J Cell Biol. 1985 Sep;101(3):862–870. doi: 10.1083/jcb.101.3.862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Buxbaum R. E., Heidemann S. R. A thermodynamic model for force integration and microtubule assembly during axonal elongation. J Theor Biol. 1988 Oct 7;134(3):379–390. doi: 10.1016/s0022-5193(88)80068-7. [DOI] [PubMed] [Google Scholar]
  9. Daniels M. The role of microtubules in the growth and stabilization of nerve fibers. Ann N Y Acad Sci. 1975 Jun 30;253:535–544. doi: 10.1111/j.1749-6632.1975.tb19227.x. [DOI] [PubMed] [Google Scholar]
  10. Dennerll T. J., Joshi H. C., Steel V. L., Buxbaum R. E., Heidemann S. R. Tension and compression in the cytoskeleton of PC-12 neurites. II: Quantitative measurements. J Cell Biol. 1988 Aug;107(2):665–674. doi: 10.1083/jcb.107.2.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Drubin D. G., Feinstein S. C., Shooter E. M., Kirschner M. W. Nerve growth factor-induced neurite outgrowth in PC12 cells involves the coordinate induction of microtubule assembly and assembly-promoting factors. J Cell Biol. 1985 Nov;101(5 Pt 1):1799–1807. doi: 10.1083/jcb.101.5.1799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Drubin D., Kobayashi S., Kellogg D., Kirschner M. Regulation of microtubule protein levels during cellular morphogenesis in nerve growth factor-treated PC12 cells. J Cell Biol. 1988 May;106(5):1583–1591. doi: 10.1083/jcb.106.5.1583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Forscher P., Smith S. J. Actions of cytochalasins on the organization of actin filaments and microtubules in a neuronal growth cone. J Cell Biol. 1988 Oct;107(4):1505–1516. doi: 10.1083/jcb.107.4.1505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fujii D. K., Massoglia S. L., Savion N., Gospodarowicz D. Neurite outgrowth and protein synthesis by PC12 cells as a function of substratum and nerve growth factor. J Neurosci. 1982 Aug;2(8):1157–1175. doi: 10.1523/JNEUROSCI.02-08-01157.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Greene L. A., Liem R. K., Shelanski M. L. Regulation of a high molecular weight microtubule-associated protein in PC12 cells by nerve growth factor. J Cell Biol. 1983 Jan;96(1):76–83. doi: 10.1083/jcb.96.1.76. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Heidemann S. R., Joshi H. C., Schechter A., Fletcher J. R., Bothwell M. Synergistic effects of cyclic AMP and nerve growth factor on neurite outgrowth and microtubule stability of PC12 cells. J Cell Biol. 1985 Mar;100(3):916–927. doi: 10.1083/jcb.100.3.916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hill T. L., Kirschner M. W. Bioenergetics and kinetics of microtubule and actin filament assembly-disassembly. Int Rev Cytol. 1982;78:1–125. [PubMed] [Google Scholar]
  18. Jacobs J. R., Stevens J. K. Changes in the organization of the neuritic cytoskeleton during nerve growth factor-activated differentiation of PC12 cells: a serial electron microscopic study of the development and control of neurite shape. J Cell Biol. 1986 Sep;103(3):895–906. doi: 10.1083/jcb.103.3.895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Joshi H. C., Baas P., Chu D. T., Heidemann S. R. The cytoskeleton of neurites after microtubule depolymerization. Exp Cell Res. 1986 Mar;163(1):233–245. doi: 10.1016/0014-4827(86)90576-8. [DOI] [PubMed] [Google Scholar]
  20. Joshi H. C., Chu D., Buxbaum R. E., Heidemann S. R. Tension and compression in the cytoskeleton of PC 12 neurites. J Cell Biol. 1985 Sep;101(3):697–705. doi: 10.1083/jcb.101.3.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lamoureux P., Buxbaum R. E., Heidemann S. R. Direct evidence that growth cones pull. Nature. 1989 Jul 13;340(6229):159–162. doi: 10.1038/340159a0. [DOI] [PubMed] [Google Scholar]
  22. Landis S. C. Neuronal growth cones. Annu Rev Physiol. 1983;45:567–580. doi: 10.1146/annurev.ph.45.030183.003031. [DOI] [PubMed] [Google Scholar]
  23. Letourneau P. C., Ressler A. H. Inhibition of neurite initiation and growth by taxol. J Cell Biol. 1984 Apr;98(4):1355–1362. doi: 10.1083/jcb.98.4.1355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Letourneau P. C., Shattuck T. A., Ressler A. H. "Pull" and "push" in neurite elongation: observations on the effects of different concentrations of cytochalasin B and taxol. Cell Motil Cytoskeleton. 1987;8(3):193–209. doi: 10.1002/cm.970080302. [DOI] [PubMed] [Google Scholar]
  25. Luckenbill-Edds L., Van Horn C., Greene L. A. Fine structure of initial outgrowth of processes induced in a pheochromocytoma cell line (PC12) by nerve growth factor. J Neurocytol. 1979 Aug;8(4):493–511. doi: 10.1007/BF01214805. [DOI] [PubMed] [Google Scholar]
  26. Marsh L., Letourneau P. C. Growth of neurites without filopodial or lamellipodial activity in the presence of cytochalasin B. J Cell Biol. 1984 Dec;99(6):2041–2047. doi: 10.1083/jcb.99.6.2041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mitchison T., Kirschner M. Cytoskeletal dynamics and nerve growth. Neuron. 1988 Nov;1(9):761–772. doi: 10.1016/0896-6273(88)90124-9. [DOI] [PubMed] [Google Scholar]
  28. Notter M. F. Selective attachment of neural cells to specific substrates including Cell-Tak, a new cellular adhesive. Exp Cell Res. 1988 Aug;177(2):237–246. doi: 10.1016/0014-4827(88)90458-2. [DOI] [PubMed] [Google Scholar]
  29. Rogelj S., Klagsbrun M., Atzmon R., Kurokawa M., Haimovitz A., Fuks Z., Vlodavsky I. Basic fibroblast growth factor is an extracellular matrix component required for supporting the proliferation of vascular endothelial cells and the differentiation of PC12 cells. J Cell Biol. 1989 Aug;109(2):823–831. doi: 10.1083/jcb.109.2.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sanes J. R. Extracellular matrix molecules that influence neural development. Annu Rev Neurosci. 1989;12:491–516. doi: 10.1146/annurev.ne.12.030189.002423. [DOI] [PubMed] [Google Scholar]
  31. Shaw G., Bray D. Movement and extension of isolated growth cones. Exp Cell Res. 1977 Jan;104(1):55–62. doi: 10.1016/0014-4827(77)90068-4. [DOI] [PubMed] [Google Scholar]
  32. Sinclair G. I., Baas P. W., Heidemann S. R. Role of microtubules in the cytoplasmic compartmentation of neurons. II. Endocytosis in the growth cone and neurite shaft. Brain Res. 1988 May 31;450(1-2):60–68. doi: 10.1016/0006-8993(88)91544-2. [DOI] [PubMed] [Google Scholar]
  33. Smalheiser N. R. Morphologic plasticity of rapid-onset neurites in NG108-15 cells stimulated by substratum-bound laminin. Brain Res Dev Brain Res. 1989 Jan 1;45(1):39–47. doi: 10.1016/0165-3806(89)90005-9. [DOI] [PubMed] [Google Scholar]
  34. Solomon F., Magendantz M. Cytochalasin separates microtubule disassembly from loss of asymmetric morphology. J Cell Biol. 1981 Apr;89(1):157–161. doi: 10.1083/jcb.89.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Spero D. A., Roisen F. J. Neuro-2a neuroblastoma cells form neurites in the presence of taxol and cytochalasin D. Brain Res. 1985 Nov;355(1):155–159. doi: 10.1016/0165-3806(85)90016-1. [DOI] [PubMed] [Google Scholar]
  36. Tomaselli K. J., Damsky C. H., Reichardt L. F. Interactions of a neuronal cell line (PC12) with laminin, collagen IV, and fibronectin: identification of integrin-related glycoproteins involved in attachment and process outgrowth. J Cell Biol. 1987 Nov;105(5):2347–2358. doi: 10.1083/jcb.105.5.2347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tsui H. T., Lankford K. L., Ris H., Klein W. L. Novel organization of microtubules in cultured central nervous system neurons: formation of hairpin loops at ends of maturing neurites. J Neurosci. 1984 Dec;4(12):3002–3013. doi: 10.1523/JNEUROSCI.04-12-03002.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Vlodavsky I., Levi A., Lax I., Fuks Z., Schlessinger J. Induction of cell attachment and morphological differentiation in a pheochromocytoma cell line and embryonal sensory cells by the extracellular matrix. Dev Biol. 1982 Oct;93(2):285–300. doi: 10.1016/0012-1606(82)90118-x. [DOI] [PubMed] [Google Scholar]
  39. White L. A., Baas P. W., Heidemann S. R. Microtubule stability in severed axons. J Neurocytol. 1987 Dec;16(6):775–784. doi: 10.1007/BF01611985. [DOI] [PubMed] [Google Scholar]
  40. Wujek J. R., Akeson R. A. Extracellular matrix derived from astrocytes stimulates neuritic outgrowth from PC12 cells in vitro. Brain Res. 1987 Jul;431(1):87–97. doi: 10.1016/0165-3806(87)90198-2. [DOI] [PubMed] [Google Scholar]
  41. Yamada K. M., Spooner B. S., Wessells N. K. Axon growth: roles of microfilaments and microtubules. Proc Natl Acad Sci U S A. 1970 Aug;66(4):1206–1212. doi: 10.1073/pnas.66.4.1206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Zieve G. W., Turnbull D., Mullins J. M., McIntosh J. R. Production of large numbers of mitotic mammalian cells by use of the reversible microtubule inhibitor nocodazole. Nocodazole accumulated mitotic cells. Exp Cell Res. 1980 Apr;126(2):397–405. doi: 10.1016/0014-4827(80)90279-7. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES