Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1990 Feb 1;110(2):503–509. doi: 10.1083/jcb.110.2.503

Fibroblast growth factor receptor levels decrease during chick embryogenesis

PMCID: PMC2115997  PMID: 2153684

Abstract

Two putative receptors for fibroblast growth factor (FGF) of approximately 150 and 200 kD were identified in membrane preparations from chick embryos. Specific binding (femtomoles/milligram) of 125I- aFGF to whole chick embryonic membranes was relatively constant from day 2 to 7, then decreased fivefold between days 7 and 13. Day-19 chick embryos retained 125I-aFGF binding at low levels to brain, eye, and liver tissues but not to skeletal muscle or cardiac tissues. The 200-kD FGF receptor began to decline between day 4.5 and 7 and was barely detectable by day 9, whereas the 150-kD FGF receptor began to decline by day 7 but was still detectable in day-9 embryonic membranes. It is not known whether the two FGF-binding proteins represent altered forms of one polypeptide, but it is clear that their levels undergo differential changes during development. Because endogenous chick FGF may remain bound to FGF receptor in membrane preparations, membranes were treated with acidic (pH 4.0) buffers to release bound FGF; such treatment did not affect 125I-aFGF binding and moderately increased the number of binding sites in day-7 and -19 embryos. Consequently, the observed loss of high affinity 125I-aFGF binding sites and FGF-binding polypeptides most likely represents a loss of FGF receptor protein. These experiments provide in vivo evidence to support the hypothesis that regulation of FGF receptor levels may function as a mechanism for controlling FGF-dependent processes during embryonic development.

Full Text

The Full Text of this article is available as a PDF (829.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baird A., Ling N. Fibroblast growth factors are present in the extracellular matrix produced by endothelial cells in vitro: implications for a role of heparinase-like enzymes in the neovascular response. Biochem Biophys Res Commun. 1987 Jan 30;142(2):428–435. doi: 10.1016/0006-291x(87)90292-0. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Burrus L. W., Olwin B. B. Isolation of a receptor for acidic and basic fibroblast growth factor from embryonic chick. J Biol Chem. 1989 Nov 5;264(31):18647–18653. [PubMed] [Google Scholar]
  4. Clegg C. H., Hauschka S. D. Heterokaryon analysis of muscle differentiation: regulation of the postmitotic state. J Cell Biol. 1987 Aug;105(2):937–947. doi: 10.1083/jcb.105.2.937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clegg C. H., Linkhart T. A., Olwin B. B., Hauschka S. D. Growth factor control of skeletal muscle differentiation: commitment to terminal differentiation occurs in G1 phase and is repressed by fibroblast growth factor. J Cell Biol. 1987 Aug;105(2):949–956. doi: 10.1083/jcb.105.2.949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Courty J., Dauchel M. C., Mereau A., Badet J., Barritault D. Presence of basic fibroblast growth factor receptors in bovine brain membranes. J Biol Chem. 1988 Aug 15;263(23):11217–11220. [PubMed] [Google Scholar]
  7. DiMario J., Buffinger N., Yamada S., Strohman R. C. Fibroblast growth factor in the extracellular matrix of dystrophic (mdx) mouse muscle. Science. 1989 May 12;244(4905):688–690. doi: 10.1126/science.2717945. [DOI] [PubMed] [Google Scholar]
  8. Folkman J., Klagsbrun M. Angiogenic factors. Science. 1987 Jan 23;235(4787):442–447. doi: 10.1126/science.2432664. [DOI] [PubMed] [Google Scholar]
  9. Joseph-Silverstein J., Consigli S. A., Lyser K. M., Ver Pault C. Basic fibroblast growth factor in the chick embryo: immunolocalization to striated muscle cells and their precursors. J Cell Biol. 1989 Jun;108(6):2459–2466. doi: 10.1083/jcb.108.6.2459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kan M., DiSorbo D., Hou J. Z., Hoshi H., Mansson P. E., McKeehan W. L. High and low affinity binding of heparin-binding growth factor to a 130-kDa receptor correlates with stimulation and inhibition of growth of a differentiated human hepatoma cell. J Biol Chem. 1988 Aug 15;263(23):11306–11313. [PubMed] [Google Scholar]
  11. Kardami E., Spector D., Strohman R. C. Myogenic growth factor present in skeletal muscle is purified by heparin-affinity chromatography. Proc Natl Acad Sci U S A. 1985 Dec;82(23):8044–8047. doi: 10.1073/pnas.82.23.8044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kimelman D., Abraham J. A., Haaparanta T., Palisi T. M., Kirschner M. W. The presence of fibroblast growth factor in the frog egg: its role as a natural mesoderm inducer. Science. 1988 Nov 18;242(4881):1053–1056. doi: 10.1126/science.3194757. [DOI] [PubMed] [Google Scholar]
  13. Kimelman D., Kirschner M. Synergistic induction of mesoderm by FGF and TGF-beta and the identification of an mRNA coding for FGF in the early Xenopus embryo. Cell. 1987 Dec 4;51(5):869–877. doi: 10.1016/0092-8674(87)90110-3. [DOI] [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Lim R. W., Hauschka S. D. A rapid decrease in epidermal growth factor-binding capacity accompanies the terminal differentiation of mouse myoblasts in vitro. J Cell Biol. 1984 Feb;98(2):739–747. doi: 10.1083/jcb.98.2.739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Linkhart T. A., Clegg C. H., Hauschika S. D. Myogenic differentiation in permanent clonal mouse myoblast cell lines: regulation by macromolecular growth factors in the culture medium. Dev Biol. 1981 Aug;86(1):19–30. doi: 10.1016/0012-1606(81)90311-0. [DOI] [PubMed] [Google Scholar]
  17. Liu L. M., Nicoll C. S. Evidence for a role of basic fibroblast growth factor in rat embryonic growth and differentiation. Endocrinology. 1988 Oct;123(4):2027–2031. doi: 10.1210/endo-123-4-2027. [DOI] [PubMed] [Google Scholar]
  18. Mascarelli F., Raulais D., Counis M. F., Courtois Y. Characterization of acidic and basic fibroblast growth factors in brain, retina and vitreous chick embryo. Biochem Biophys Res Commun. 1987 Jul 31;146(2):478–486. doi: 10.1016/0006-291x(87)90554-7. [DOI] [PubMed] [Google Scholar]
  19. Munaim S. I., Klagsbrun M., Toole B. P. Developmental changes in fibroblast growth factor in the chicken embryo limb bud. Proc Natl Acad Sci U S A. 1988 Nov;85(21):8091–8093. doi: 10.1073/pnas.85.21.8091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Neufeld G., Gospodarowicz D. Basic and acidic fibroblast growth factors interact with the same cell surface receptors. J Biol Chem. 1986 Apr 25;261(12):5631–5637. [PubMed] [Google Scholar]
  21. Olwin B. B., Hauschka S. D. Cell surface fibroblast growth factor and epidermal growth factor receptors are permanently lost during skeletal muscle terminal differentiation in culture. J Cell Biol. 1988 Aug;107(2):761–769. doi: 10.1083/jcb.107.2.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Olwin B. B., Hauschka S. D. Cell type and tissue distribution of the fibroblast growth factor receptor. J Cell Biochem. 1989 Apr;39(4):443–454. doi: 10.1002/jcb.240390410. [DOI] [PubMed] [Google Scholar]
  23. Olwin B. B., Hauschka S. D. Identification of the fibroblast growth factor receptor of Swiss 3T3 cells and mouse skeletal muscle myoblasts. Biochemistry. 1986 Jun 17;25(12):3487–3492. doi: 10.1021/bi00360a001. [DOI] [PubMed] [Google Scholar]
  24. Risau W. Developing brain produces an angiogenesis factor. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3855–3859. doi: 10.1073/pnas.83.11.3855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Risau W., Gautschi-Sova P., Böhlen P. Endothelial cell growth factors in embryonic and adult chick brain are related to human acidic fibroblast growth factor. EMBO J. 1988 Apr;7(4):959–962. doi: 10.1002/j.1460-2075.1988.tb02901.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rizzino A., Kuszynski C., Ruff E., Tiesman J. Production and utilization of growth factors related to fibroblast growth factor by embryonal carcinoma cells and their differentiated cells. Dev Biol. 1988 Sep;129(1):61–71. doi: 10.1016/0012-1606(88)90161-3. [DOI] [PubMed] [Google Scholar]
  27. Rosa F., Roberts A. B., Danielpour D., Dart L. L., Sporn M. B., Dawid I. B. Mesoderm induction in amphibians: the role of TGF-beta 2-like factors. Science. 1988 Feb 12;239(4841 Pt 1):783–785. doi: 10.1126/science.3422517. [DOI] [PubMed] [Google Scholar]
  28. Seed J., Hauschka S. D. Clonal analysis of vertebrate myogenesis. VIII. Fibroblasts growth factor (FGF)-dependent and FGF-independent muscle colony types during chick wing development. Dev Biol. 1988 Jul;128(1):40–49. doi: 10.1016/0012-1606(88)90264-3. [DOI] [PubMed] [Google Scholar]
  29. Seed J., Olwin B. B., Hauschka S. D. Fibroblast growth factor levels in the whole embryo and limb bud during chick development. Dev Biol. 1988 Jul;128(1):50–57. doi: 10.1016/0012-1606(88)90265-5. [DOI] [PubMed] [Google Scholar]
  30. Slack J. M., Darlington B. G., Heath J. K., Godsave S. F. Mesoderm induction in early Xenopus embryos by heparin-binding growth factors. Nature. 1987 Mar 12;326(6109):197–200. doi: 10.1038/326197a0. [DOI] [PubMed] [Google Scholar]
  31. Weeks D. L., Melton D. A. A maternal mRNA localized to the vegetal hemisphere in Xenopus eggs codes for a growth factor related to TGF-beta. Cell. 1987 Dec 4;51(5):861–867. doi: 10.1016/0092-8674(87)90109-7. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES