Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1990 Feb 1;110(2):427–436. doi: 10.1083/jcb.110.2.427

The cDNA-deduced amino acid sequence for trichohyalin, a differentiation marker in the hair follicle, contains a 23 amino acid repeat

PMCID: PMC2116006  PMID: 2298812

Abstract

Trichohyalin is a highly expressed protein within the inner root sheath of hair follicles and is similar, or identical, to a protein present in the hair medulla. In situ hybridization studies have shown that trichohyalin is a very early differentiation marker in both tissues and that in each case the trichohyalin mRNA is expressed from the same single copy gene. A partial cDNA clone for sheep trichohyalin has been isolated and represents approximately 40% of the full-length trichohyalin mRNA. The carboxy-terminal 458 amino acids of trichohyalin are encoded, and the first 429 amino acids consist of full- or partial- length tandem repeats of a 23 amino acid sequence. These repeats are characterized by a high proportion of charged amino acids. Secondary structure analyses predict that the majority of the encoded protein could form alpha-helical structures that might form filamentous aggregates of intermediate filament dimensions, even though the heptad motif obligatory for the intermediate filament structure itself is absent. The alternative structural role of trichohyalin could be as an intermediate filament-associated protein, as proposed from other evidence.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BIRBECK M. S., MERCER E. H. The electron microscopy of the human hair follicle. III. The inner root sheath and trichohyaline. J Biophys Biochem Cytol. 1957 Mar 25;3(2):223–230. doi: 10.1083/jcb.3.2.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bantle J. A., Maxwell I. H., Hahn W. E. Specificity of oligo (dT)-cellulose chromatography in the isolation of polyadenylated RNA. Anal Biochem. 1976 May 7;72:413–427. doi: 10.1016/0003-2697(76)90549-2. [DOI] [PubMed] [Google Scholar]
  3. Chen R., Doolittle R. F. - cross-linking sites in human and bovine fibrin. Biochemistry. 1971 Nov 23;10(24):4487–4491. doi: 10.1021/bi00800a021. [DOI] [PubMed] [Google Scholar]
  4. Cox K. H., DeLeon D. V., Angerer L. M., Angerer R. C. Detection of mrnas in sea urchin embryos by in situ hybridization using asymmetric RNA probes. Dev Biol. 1984 Feb;101(2):485–502. doi: 10.1016/0012-1606(84)90162-3. [DOI] [PubMed] [Google Scholar]
  5. Diaz-Ruiz J. R., Kaper J. M. Isolation of viral double-stranded RNAs using a LiCl fractionation procedure. Prep Biochem. 1978;8(1):1–17. doi: 10.1080/00327487808068215. [DOI] [PubMed] [Google Scholar]
  6. Eckert R. L., Green H. Structure and evolution of the human involucrin gene. Cell. 1986 Aug 15;46(4):583–589. doi: 10.1016/0092-8674(86)90884-6. [DOI] [PubMed] [Google Scholar]
  7. Forster A. C., McInnes J. L., Skingle D. C., Symons R. H. Non-radioactive hybridization probes prepared by the chemical labelling of DNA and RNA with a novel reagent, photobiotin. Nucleic Acids Res. 1985 Feb 11;13(3):745–761. doi: 10.1093/nar/13.3.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gubler U., Hoffman B. J. A simple and very efficient method for generating cDNA libraries. Gene. 1983 Nov;25(2-3):263–269. doi: 10.1016/0378-1119(83)90230-5. [DOI] [PubMed] [Google Scholar]
  9. Harding H. W., Rogers G. E. Epsilon-(gamma-glutamyl)lysine cross-linkage in citrulline-containing protein fractions from hair. Biochemistry. 1971 Feb 16;10(4):624–630. doi: 10.1021/bi00780a013. [DOI] [PubMed] [Google Scholar]
  10. Harding H. W., Rogers G. E. The occurrence of the -( -glutamyl)lysine cross-link in the medulla of hair and quill. Biochim Biophys Acta. 1972 Jan 26;257(1):37–39. doi: 10.1016/0005-2795(72)90251-6. [DOI] [PubMed] [Google Scholar]
  11. Heid H. W., Moll I., Franke W. W. Patterns of expression of trichocytic and epithelial cytokeratins in mammalian tissues. I. Human and bovine hair follicles. Differentiation. 1988;37(2):137–157. doi: 10.1111/j.1432-0436.1988.tb00805.x. [DOI] [PubMed] [Google Scholar]
  12. Ito M., Tazawa T., Ito K., Shimizu N., Katsuumi K., Sato Y. Immunological characteristics and histological distribution of human hair fibrous proteins studied with anti-hair keratin monoclonal antibodies HKN-2, HKN-4, and HKN-6. J Histochem Cytochem. 1986 Feb;34(2):269–275. doi: 10.1177/34.2.2418103. [DOI] [PubMed] [Google Scholar]
  13. Ito M., Tazawa T., Shimizu N., Ito K., Katsuumi K., Sato Y., Hashimoto K. Cell differentiation in human anagen hair and hair follicles studied with anti-hair keratin monoclonal antibodies. J Invest Dermatol. 1986 May;86(5):563–569. doi: 10.1111/1523-1747.ep12355183. [DOI] [PubMed] [Google Scholar]
  14. Kao F. T., Hartz J. A., Law M. L., Davidson J. N. Isolation and chromosomal localization of unique DNA sequences from a human genomic library. Proc Natl Acad Sci U S A. 1982 Feb;79(3):865–869. doi: 10.1073/pnas.79.3.865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kopan R., Fuchs E. A new look into an old problem: keratins as tools to investigate determination, morphogenesis, and differentiation in skin. Genes Dev. 1989 Jan;3(1):1–15. doi: 10.1101/gad.3.1.1. [DOI] [PubMed] [Google Scholar]
  16. Lane E. B., Bártek J., Purkis P. E., Leigh I. M. Keratin antigens in differentiating skin. Ann N Y Acad Sci. 1985;455:241–258. doi: 10.1111/j.1749-6632.1985.tb50415.x. [DOI] [PubMed] [Google Scholar]
  17. Lipman D. J., Pearson W. R. Rapid and sensitive protein similarity searches. Science. 1985 Mar 22;227(4693):1435–1441. doi: 10.1126/science.2983426. [DOI] [PubMed] [Google Scholar]
  18. McLachlan A. D., Karn J. Periodic charge distributions in the myosin rod amino acid sequence match cross-bridge spacings in muscle. Nature. 1982 Sep 16;299(5880):226–231. doi: 10.1038/299226a0. [DOI] [PubMed] [Google Scholar]
  19. Messing J., Crea R., Seeburg P. H. A system for shotgun DNA sequencing. Nucleic Acids Res. 1981 Jan 24;9(2):309–321. doi: 10.1093/nar/9.2.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Messing J., Vieira J. A new pair of M13 vectors for selecting either DNA strand of double-digest restriction fragments. Gene. 1982 Oct;19(3):269–276. doi: 10.1016/0378-1119(82)90016-6. [DOI] [PubMed] [Google Scholar]
  21. Norrander J., Kempe T., Messing J. Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis. Gene. 1983 Dec;26(1):101–106. doi: 10.1016/0378-1119(83)90040-9. [DOI] [PubMed] [Google Scholar]
  22. PARAKKAL P. F., MATOLTSY A. G. A STUDY OF THE DIFFERENTIATION PRODUCTS OF THE HAIR FOLLICLE CELLS WITH THE ELECTRON MICROSCOPE. J Invest Dermatol. 1964 Jul;42:23–34. [PubMed] [Google Scholar]
  23. Parry D. A., Crewther W. G., Fraser R. D., MacRae T. P. Structure of alpha-keratin: structural implication of the amino acid sequences of the type I and type II chain segments. J Mol Biol. 1977 Jun 25;113(2):449–454. doi: 10.1016/0022-2836(77)90153-x. [DOI] [PubMed] [Google Scholar]
  24. Powell B. C., Sleigh M. J., Ward K. A., Rogers G. E. Mammalian keratin gene families: organisation of genes coding for the B2 high-sulphur proteins of sheep wool. Nucleic Acids Res. 1983 Aug 25;11(16):5327–5346. doi: 10.1093/nar/11.16.5327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. ROGERS G. E. Occurrence of citrulline in proteins. Nature. 1962 Jun 23;194:1149–1151. doi: 10.1038/1941149a0. [DOI] [PubMed] [Google Scholar]
  26. Rogers G. E., Harding H. W., Llewellyn-Smith I. J. The origin of citrulline-containing proteins in the hair follicle and the chemical nature of trichohyalin, an intracellular precursor. Biochim Biophys Acta. 1977 Nov 25;495(1):159–175. doi: 10.1016/0005-2795(77)90250-1. [DOI] [PubMed] [Google Scholar]
  27. Rothnagel J. A., Rogers G. E. Trichohyalin, an intermediate filament-associated protein of the hair follicle. J Cell Biol. 1986 Apr;102(4):1419–1429. doi: 10.1083/jcb.102.4.1419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sanger F., Coulson A. R., Barrell B. G., Smith A. J., Roe B. A. Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. J Mol Biol. 1980 Oct 25;143(2):161–178. doi: 10.1016/0022-2836(80)90196-5. [DOI] [PubMed] [Google Scholar]
  29. Staden R. An interactive graphics program for comparing and aligning nucleic acid and amino acid sequences. Nucleic Acids Res. 1982 May 11;10(9):2951–2961. doi: 10.1093/nar/10.9.2951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Staden R. Graphic methods to determine the function of nucleic acid sequences. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 2):521–538. doi: 10.1093/nar/12.1part2.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Thomas P. S. Hybridization of denatured RNA transferred or dotted nitrocellulose paper. Methods Enzymol. 1983;100:255–266. doi: 10.1016/0076-6879(83)00060-9. [DOI] [PubMed] [Google Scholar]
  32. Wilbur W. J., Lipman D. J. Rapid similarity searches of nucleic acid and protein data banks. Proc Natl Acad Sci U S A. 1983 Feb;80(3):726–730. doi: 10.1073/pnas.80.3.726. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES