Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1990 Feb 1;110(2):359–365. doi: 10.1083/jcb.110.2.359

Exogenous nucleation sites fail to induce detectable polymerization of actin in living cells

PMCID: PMC2116008  PMID: 2404991

Abstract

Most nonmuscle cells are known to maintain a relatively high concentration of unpolymerized actin. To determine how the polymerization of actin is regulated, exogenous nucleation sites, prepared by sonicating fluorescein phalloidin-labeled actin filaments, were microinjected into living Swiss 3T3 and NRK cells. The nucleation sites remained as a cluster for over an hour after microinjection, and caused no detectable change in the phase morphology of the cell. As determined by immunofluorescence specific for endogenous actin and by staining cells with rhodamine phalloidin, the microinjection induced neither an extensive polymerization of endogenous actin off the nucleation sites, nor changes in the distribution of actin filaments. In addition, the extent of actin polymerization, as estimated by integrating the fluorescence intensities of bound rhodamine phalloidin, did not appear to be affected. To determine whether the nucleation sites remained active after microinjection, cells were first injected with nucleation sites and, following a 20-min incubation, microinjected with monomeric rhodamine-labeled actin. The rhodamine-labeled actin became extensively associated with the nucleation sites, suggesting that at least some of the nucleation activity was maintained, and that the endogenous actin behaved in a different manner from the exogenous actin subunits. Similarly, when cells containing nucleation sites were extracted and incubated with rhodamine-labeled actin, the rhodamine- labeled actin became associated with the nucleation sites in a cytochalasin-sensitive manner. These observations suggest that capping and inhibition of nucleation cannot account for the regulation of actin polymerization in living cells. However, the sequestration of monomers probably plays a crucial role.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amato P. A., Unanue E. R., Taylor D. L. Distribution of actin in spreading macrophages: a comparative study on living and fixed cells. J Cell Biol. 1983 Mar;96(3):750–761. doi: 10.1083/jcb.96.3.750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bamburg J. R., Harris H. E., Weeds A. G. Partial purification and characterization of an actin depolymerizing factor from brain. FEBS Lett. 1980 Nov 17;121(1):178–182. doi: 10.1016/0014-5793(80)81292-0. [DOI] [PubMed] [Google Scholar]
  3. Blikstad I., Markey F., Carlsson L., Persson T., Lindberg U. Selective assay of monomeric and filamentous actin in cell extracts, using inhibition of deoxyribonuclease I. Cell. 1978 Nov;15(3):935–943. doi: 10.1016/0092-8674(78)90277-5. [DOI] [PubMed] [Google Scholar]
  4. Bonder E. M., Fishkind D. J., Mooseker M. S. Direct measurement of critical concentrations and assembly rate constants at the two ends of an actin filament. Cell. 1983 Sep;34(2):491–501. doi: 10.1016/0092-8674(83)90382-3. [DOI] [PubMed] [Google Scholar]
  5. Bray D., Thomas C. Unpolymerized actin in fibroblasts and brain. J Mol Biol. 1976 Aug 25;105(4):527–544. doi: 10.1016/0022-2836(76)90233-3. [DOI] [PubMed] [Google Scholar]
  6. Carlsson L., Markey F., Blikstad I., Persson T., Lindberg U. Reorganization of actin in platelets stimulated by thrombin as measured by the DNase I inhibition assay. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6376–6380. doi: 10.1073/pnas.76.12.6376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Carlsson L., Nyström L. E., Sundkvist I., Markey F., Lindberg U. Actin polymerizability is influenced by profilin, a low molecular weight protein in non-muscle cells. J Mol Biol. 1977 Sep 25;115(3):465–483. doi: 10.1016/0022-2836(77)90166-8. [DOI] [PubMed] [Google Scholar]
  8. Condeelis J., Hall A., Bresnick A., Warren V., Hock R., Bennett H., Ogihara S. Actin polymerization and pseudopod extension during amoeboid chemotaxis. Cell Motil Cytoskeleton. 1988;10(1-2):77–90. doi: 10.1002/cm.970100113. [DOI] [PubMed] [Google Scholar]
  9. Cooper J. A., Blum J. D., Williams R. C., Jr, Pollard T. D. Purification and characterization of actophorin, a new 15,000-dalton actin-binding protein from Acanthamoeba castellanii. J Biol Chem. 1986 Jan 5;261(1):477–485. [PubMed] [Google Scholar]
  10. Cooper J. A., Walker S. B., Pollard T. D. Pyrene actin: documentation of the validity of a sensitive assay for actin polymerization. J Muscle Res Cell Motil. 1983 Apr;4(2):253–262. doi: 10.1007/BF00712034. [DOI] [PubMed] [Google Scholar]
  11. Fechheimer M., Zigmond S. H. Changes in cytoskeletal proteins of polymorphonuclear leukocytes induced by chemotactic peptides. Cell Motil. 1983;3(4):349–361. doi: 10.1002/cm.970030406. [DOI] [PubMed] [Google Scholar]
  12. Fox J. E., Phillips D. R. Inhibition of actin polymerization in blood platelets by cytochalasins. Nature. 1981 Aug 13;292(5824):650–652. doi: 10.1038/292650a0. [DOI] [PubMed] [Google Scholar]
  13. Gershman L. C., Newman J., Selden L. A., Estes J. E. Bound-cation exchange affects the lag phase in actin polymerization. Biochemistry. 1984 May 8;23(10):2199–2203. doi: 10.1021/bi00305a015. [DOI] [PubMed] [Google Scholar]
  14. Glacy S. D. Subcellular distribution of rhodamine-actin microinjected into living fibroblastic cells. J Cell Biol. 1983 Oct;97(4):1207–1213. doi: 10.1083/jcb.97.4.1207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Graessmann A., Graessmann M., Mueller C. Microinjection of early SV40 DNA fragments and T antigen. Methods Enzymol. 1980;65(1):816–825. doi: 10.1016/s0076-6879(80)65076-9. [DOI] [PubMed] [Google Scholar]
  16. Koffer A., Edgar A. J., Bamburg J. R. Identification of two species of actin depolymerizing factor in cultures of BHK cells. J Muscle Res Cell Motil. 1988 Aug;9(4):320–328. doi: 10.1007/BF01773875. [DOI] [PubMed] [Google Scholar]
  17. Kouyama T., Mihashi K. Fluorimetry study of N-(1-pyrenyl)iodoacetamide-labelled F-actin. Local structural change of actin protomer both on polymerization and on binding of heavy meromyosin. Eur J Biochem. 1981;114(1):33–38. [PubMed] [Google Scholar]
  18. Kron S. J., Spudich J. A. Fluorescent actin filaments move on myosin fixed to a glass surface. Proc Natl Acad Sci U S A. 1986 Sep;83(17):6272–6276. doi: 10.1073/pnas.83.17.6272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lambooy P. K., Korn E. D. Inhibition of an early stage of actin polymerization by actobindin. J Biol Chem. 1988 Sep 15;263(26):12836–12843. [PubMed] [Google Scholar]
  20. Lambooy P. K., Korn E. D. Purification and characterization of actobindin, a new actin monomer-binding protein from Acanthamoeba castellanii. J Biol Chem. 1986 Dec 25;261(36):17150–17155. [PubMed] [Google Scholar]
  21. Lassing I., Lindberg U. Specific interaction between phosphatidylinositol 4,5-bisphosphate and profilactin. Nature. 1985 Apr 4;314(6010):472–474. doi: 10.1038/314472a0. [DOI] [PubMed] [Google Scholar]
  22. Laub F., Kaplan M., Gitler C. Actin polymerization accompanies Thy-1-capping on mouse thymocytes. FEBS Lett. 1981 Feb 9;124(1):35–38. doi: 10.1016/0014-5793(81)80048-8. [DOI] [PubMed] [Google Scholar]
  23. Lind S. E., Janmey P. A., Chaponnier C., Herbert T. J., Stossel T. P. Reversible binding of actin to gelsolin and profilin in human platelet extracts. J Cell Biol. 1987 Aug;105(2):833–842. doi: 10.1083/jcb.105.2.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mabuchi I. An actin-depolymerizing protein (depactin) from starfish oocytes: properties and interaction with actin. J Cell Biol. 1983 Nov;97(5 Pt 1):1612–1621. doi: 10.1083/jcb.97.5.1612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. MacLean-Fletcher S., Pollard T. D. Identification of a factor in conventional muscle actin preparations which inhibits actin filament self-association. Biochem Biophys Res Commun. 1980 Sep 16;96(1):18–27. doi: 10.1016/0006-291x(80)91175-4. [DOI] [PubMed] [Google Scholar]
  26. McKenna N. M., Meigs J. B., Wang Y. L. Exchangeability of alpha-actinin in living cardiac fibroblasts and muscle cells. J Cell Biol. 1985 Dec;101(6):2223–2232. doi: 10.1083/jcb.101.6.2223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mckenna N. M., Wang Y. L. Culturing cells on the microscope stage. Methods Cell Biol. 1989;29:195–205. doi: 10.1016/s0091-679x(08)60195-8. [DOI] [PubMed] [Google Scholar]
  28. Otey C. A., Kalnoski M. H., Bulinski J. C. Immunolocalization of muscle and nonmuscle isoforms of actin in myogenic cells and adult skeletal muscle. Cell Motil Cytoskeleton. 1988;9(4):337–348. doi: 10.1002/cm.970090406. [DOI] [PubMed] [Google Scholar]
  29. Otey C. A., Kalnoski M. H., Lessard J. L., Bulinski J. C. Immunolocalization of the gamma isoform of nonmuscle actin in cultured cells. J Cell Biol. 1986 May;102(5):1726–1737. doi: 10.1083/jcb.102.5.1726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Podolski J. L., Steck T. L. Association of deoxyribonuclease I with the pointed ends of actin filaments in human red blood cell membrane skeletons. J Biol Chem. 1988 Jan 15;263(2):638–645. [PubMed] [Google Scholar]
  31. Pollard T. D., Cooper J. A. Actin and actin-binding proteins. A critical evaluation of mechanisms and functions. Annu Rev Biochem. 1986;55:987–1035. doi: 10.1146/annurev.bi.55.070186.005011. [DOI] [PubMed] [Google Scholar]
  32. Rao K. M., Varani J. Actin polymerization induced by chemotactic peptide and concanavalin A in rat neutrophils. J Immunol. 1982 Oct;129(4):1605–1607. [PubMed] [Google Scholar]
  33. Schliwa M., van Blerkom J. Structural interaction of cytoskeletal components. J Cell Biol. 1981 Jul;90(1):222–235. doi: 10.1083/jcb.90.1.222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
  35. Stossel T. P., Chaponnier C., Ezzell R. M., Hartwig J. H., Janmey P. A., Kwiatkowski D. J., Lind S. E., Smith D. B., Southwick F. S., Yin H. L. Nonmuscle actin-binding proteins. Annu Rev Cell Biol. 1985;1:353–402. doi: 10.1146/annurev.cb.01.110185.002033. [DOI] [PubMed] [Google Scholar]
  36. Wang Y. L. Reorganization of actin filament bundles in living fibroblasts. J Cell Biol. 1984 Oct;99(4 Pt 1):1478–1485. doi: 10.1083/jcb.99.4.1478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Yanagida T., Nakase M., Nishiyama K., Oosawa F. Direct observation of motion of single F-actin filaments in the presence of myosin. Nature. 1984 Jan 5;307(5946):58–60. doi: 10.1038/307058a0. [DOI] [PubMed] [Google Scholar]
  38. Yin H. L., Stossel T. P. Control of cytoplasmic actin gel-sol transformation by gelsolin, a calcium-dependent regulatory protein. Nature. 1979 Oct 18;281(5732):583–586. doi: 10.1038/281583a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES