Abstract
To examine the dependence of poleward force at a kinetochore on the number of kinetochore microtubules (kMTs), we altered the normal balance in the number of microtubules at opposing homologous kinetochores in meiosis I grasshopper spermatocytes at metaphase with a focused laser microbeam. Observations were made with light and electron microscopy. Irradiations that partially damaged one homologous kinetochore caused the bivalent chromosome to shift to a new equilibrium position closer to the pole to which the unirradiated kinetochore was tethered; the greater the dose of irradiation, the farther the chromosome moved. The number of kMTs on the irradiated kinetochore decreased with severity of irradiation, while the number of kMTs on the unirradiated kinetochore remained constant and independent of chromosome-to-pole distance. Assuming a balance of forces on the chromosome at congression equilibrium, our results demonstrate that the net poleward force on a chromosome depends on the number of kMTs and the distance from the pole. In contrast, the velocity of chromosome movement showed little dependence on the number of kMTs. Possible mechanisms which explain the relationship between the poleward force at a kinetochore, the number of kinetochore microtubules, and the lengths of the kinetochore fibers at congression equilibrium include a "traction fiber model" in which poleward force producers are distributed along the length of the kinetochore fibers, or a "kinetochore motor-polar ejection model" in which force producers located at or near the kinetochore pull the chromosomes poleward along the kMTs and against an ejection force that is produced by the polar microtubule array and increases in strength toward the pole.
Full Text
The Full Text of this article is available as a PDF (3.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bajer A. S. Functional autonomy of monopolar spindle and evidence for oscillatory movement in mitosis. J Cell Biol. 1982 Apr;93(1):33–48. doi: 10.1083/jcb.93.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Begg D. A., Ellis G. W. Micromanipulation studies of chromosome movement. I. Chromosome-spindle attachment and the mechanical properties of chromosomal spindle fibers. J Cell Biol. 1979 Aug;82(2):528–541. doi: 10.1083/jcb.82.2.528. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berns M. W., Aist J., Edwards J., Strahs K., Girton J., McNeill P., Rattner J. B., Kitzes M., Hammer-Wilson M., Liaw L. H. Laser microsurgery in cell and developmental biology. Science. 1981 Jul 31;213(4507):505–513. doi: 10.1126/science.7017933. [DOI] [PubMed] [Google Scholar]
- Cassimeris L. U., Walker R. A., Pryer N. K., Salmon E. D. Dynamic instability of microtubules. Bioessays. 1987 Oct;7(4):149–154. doi: 10.1002/bies.950070403. [DOI] [PubMed] [Google Scholar]
- Forer A. Do anaphase chromosomes chew their way to the pole or are they pulled by actin? J Cell Sci. 1988 Dec;91(Pt 4):449–453. doi: 10.1242/jcs.91.4.449. [DOI] [PubMed] [Google Scholar]
- Forer A. Does actin produce the force that moves a chromosome to the pole during anaphase? Can J Biochem Cell Biol. 1985 Jun;63(6):585–598. doi: 10.1139/o85-077. [DOI] [PubMed] [Google Scholar]
- Gorbsky G. J., Borisy G. G. Microtubules of the kinetochore fiber turn over in metaphase but not in anaphase. J Cell Biol. 1989 Aug;109(2):653–662. doi: 10.1083/jcb.109.2.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gorbsky G. J., Sammak P. J., Borisy G. G. Chromosomes move poleward in anaphase along stationary microtubules that coordinately disassemble from their kinetochore ends. J Cell Biol. 1987 Jan;104(1):9–18. doi: 10.1083/jcb.104.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hays T. S., Wise D., Salmon E. D. Traction force on a kinetochore at metaphase acts as a linear function of kinetochore fiber length. J Cell Biol. 1982 May;93(2):374–389. doi: 10.1083/jcb.93.2.374. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hill T. L., Kirschner M. W. Bioenergetics and kinetics of microtubule and actin filament assembly-disassembly. Int Rev Cytol. 1982;78:1–125. [PubMed] [Google Scholar]
- Hiramoto Y., Hamaguchi Y., Shóji Y., Schroeder T. E., Shimoda S., Nakamura S. Quantitative studies on the polarization optical properties of living cells II. The role of microtubules in birefringence of the spindle of the sea urchin egg. J Cell Biol. 1981 Apr;89(1):121–130. doi: 10.1083/jcb.89.1.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koshland D. E., Mitchison T. J., Kirschner M. W. Polewards chromosome movement driven by microtubule depolymerization in vitro. Nature. 1988 Feb 11;331(6156):499–504. doi: 10.1038/331499a0. [DOI] [PubMed] [Google Scholar]
- Kubai D. F. Unorthodox mitosis in Trichonympha agilis: kinetochore differentiation and chromosome movement. J Cell Sci. 1973 Sep;13(2):511–552. doi: 10.1242/jcs.13.2.511. [DOI] [PubMed] [Google Scholar]
- Luykx P. Cellular mechanisms of chromosome distribution. Int Rev Cytol. 1970;(Suppl):1–173. [PubMed] [Google Scholar]
- Margolis R. L., Wilson L. Opposite end assembly and disassembly of microtubules at steady state in vitro. Cell. 1978 Jan;13(1):1–8. doi: 10.1016/0092-8674(78)90132-0. [DOI] [PubMed] [Google Scholar]
- Mazia D., Paweletz N., Sluder G., Finze E. M. Cooperation of kinetochores and pole in the establishment of monopolar mitotic apparatus. Proc Natl Acad Sci U S A. 1981 Jan;78(1):377–381. doi: 10.1073/pnas.78.1.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McNeill P. A., Berns M. W. Chromosome behavior after laser microirradiation of a single kinetochore in mitotic PtK2 cells. J Cell Biol. 1981 Mar;88(3):543–553. doi: 10.1083/jcb.88.3.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitchison T. J. Polewards microtubule flux in the mitotic spindle: evidence from photoactivation of fluorescence. J Cell Biol. 1989 Aug;109(2):637–652. doi: 10.1083/jcb.109.2.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitchison T., Evans L., Schulze E., Kirschner M. Sites of microtubule assembly and disassembly in the mitotic spindle. Cell. 1986 May 23;45(4):515–527. doi: 10.1016/0092-8674(86)90283-7. [DOI] [PubMed] [Google Scholar]
- Mizushima-Sugano J., Maeda T., Miki-Noumura T. Flexural rigidity of singlet microtubules estimated from statistical analysis of their contour lengths and end-to-end distances. Biochim Biophys Acta. 1983 Jan 25;755(2):257–262. doi: 10.1016/0304-4165(83)90212-x. [DOI] [PubMed] [Google Scholar]
- NICKLAS R. B. CHROMOSOME VELOCITY DURING MITOSIS AS A FUNCTION OF CHROMOSOME SIZE AND POSITION. J Cell Biol. 1965 Apr;25:SUPPL–SUPPL:135. doi: 10.1083/jcb.25.1.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nicklas R. B., Brinkley B. R., Pepper D. A., Kubai D. F., Rickards G. K. Electron microscopy of spermatocytes previously studied in life: methods and some observations on micromanipulated chromosomes. J Cell Sci. 1979 Feb;35:87–104. doi: 10.1242/jcs.35.1.87. [DOI] [PubMed] [Google Scholar]
- Nicklas R. B., Gordon G. W. The total length of spindle microtubules depends on the number of chromosomes present. J Cell Biol. 1985 Jan;100(1):1–7. doi: 10.1083/jcb.100.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nicklas R. B., Kubai D. F., Hays T. S. Spindle microtubules and their mechanical associations after micromanipulation in anaphase. J Cell Biol. 1982 Oct;95(1):91–104. doi: 10.1083/jcb.95.1.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nicklas R. B. Measurements of the force produced by the mitotic spindle in anaphase. J Cell Biol. 1983 Aug;97(2):542–548. doi: 10.1083/jcb.97.2.542. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nicklas R. B. The forces that move chromosomes in mitosis. Annu Rev Biophys Biophys Chem. 1988;17:431–449. doi: 10.1146/annurev.bb.17.060188.002243. [DOI] [PubMed] [Google Scholar]
- Rieder C. L., Alexander S. P. Kinetochores are transported poleward along a single astral microtubule during chromosome attachment to the spindle in newt lung cells. J Cell Biol. 1990 Jan;110(1):81–95. doi: 10.1083/jcb.110.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rieder C. L., Davison E. A., Jensen L. C., Cassimeris L., Salmon E. D. Oscillatory movements of monooriented chromosomes and their position relative to the spindle pole result from the ejection properties of the aster and half-spindle. J Cell Biol. 1986 Aug;103(2):581–591. doi: 10.1083/jcb.103.2.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rieder C. L. The formation, structure, and composition of the mammalian kinetochore and kinetochore fiber. Int Rev Cytol. 1982;79:1–58. doi: 10.1016/s0074-7696(08)61672-1. [DOI] [PubMed] [Google Scholar]
- Salmon E. D., Begg D. A. Functional implications of cold-stable microtubules in kinetochore fibers of insect spermatocytes during anaphase. J Cell Biol. 1980 Jun;85(3):853–865. doi: 10.1083/jcb.85.3.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salmon E. D., McKeel M., Hays T. Rapid rate of tubulin dissociation from microtubules in the mitotic spindle in vivo measured by blocking polymerization with colchicine. J Cell Biol. 1984 Sep;99(3):1066–1075. doi: 10.1083/jcb.99.3.1066. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salmon E. D. Spindle microtubules: thermodynamics of in vivo assembly and role in chromosome movement. Ann N Y Acad Sci. 1975 Jun 30;253:383–406. doi: 10.1111/j.1749-6632.1975.tb19216.x. [DOI] [PubMed] [Google Scholar]
- Sato H., Ellis G. W., Inoué S. Microtubular origin of mitotic spindle form birefringence. Demonstration of the applicability of Wiener's equation. J Cell Biol. 1975 Dec;67(3):501–517. doi: 10.1083/jcb.67.3.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schaap C. J., Forer A. Video digitizer analysis of birefringence along the lengths of single chromosomal spindle fibres. II. Crane-fly spermatocyte chromosomal spindle fibres are not temperature-labile. J Cell Sci. 1984 Jan;65:41–60. doi: 10.1242/jcs.65.1.41. [DOI] [PubMed] [Google Scholar]
- Scholey J. M., Porter M. E., Grissom P. M., McIntosh J. R. Identification of kinesin in sea urchin eggs, and evidence for its localization in the mitotic spindle. Nature. 1985 Dec 5;318(6045):483–486. doi: 10.1038/318483a0. [DOI] [PubMed] [Google Scholar]
- Tippit D. H., Pillus L., Pickett-Heaps J. Organization of spindle microtubules in Ochromonas danica. J Cell Biol. 1980 Dec;87(3 Pt 1):531–545. doi: 10.1083/jcb.87.3.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- URETZ R. B., BLOOM W., ZIRKLE R. E. Irradiation of parts of individual cells. II. Effects of an ultraviolet microbeam focused on parts of chromosomes. Science. 1954 Aug 6;120(3110):197–199. doi: 10.1126/science.120.3110.197. [DOI] [PubMed] [Google Scholar]
- Vale R. D., Reese T. S., Sheetz M. P. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell. 1985 Aug;42(1):39–50. doi: 10.1016/s0092-8674(85)80099-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wise D. On the mechanism of prometaphase congression: chromosome velocity as a function of position on the spindle. Chromosoma. 1978 Nov 22;69(2):231–241. doi: 10.1007/BF00329921. [DOI] [PubMed] [Google Scholar]
- Witt P. L., Ris H., Borisy G. G. Structure of kinetochore fibers: microtubule continuity and inter-microtubule bridges. Chromosoma. 1981;83(4):523–540. doi: 10.1007/BF00328277. [DOI] [PubMed] [Google Scholar]