Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1990 Apr 1;110(4):1369–1378. doi: 10.1083/jcb.110.4.1369

Gene expression during osteogenic differentiation in mandibular condyles in vitro

PMCID: PMC2116069  PMID: 1691190

Abstract

The cartilagenous tissue of mandibular condyles of newborn mice contains progenitor cells as well as young and mature chondrogenic cells. During in vitro cultivation of the tissue, progenitor cells undergo osteogenic differentiation and form new bone (Silbermann, M., D. Lewinson, H. Gonen, M. A. Lizarbe, and K. von der Mark. 1983. Anat. Rec. 206:373-383). We have studied the expression of genes that typify osteogenic differentiation in mandibular condyles during in vitro cultivation. RNAs of the genes for collagen type I, osteonectin, alkaline phosphatase, and bone gla protein were sequentially expressed in progenitor cells and hypertrophic chondrocytes during culture. Osteopontin expression peaked in both the early and the late phase of the differentiation process. The data indicate a distinct sequence of expression of osteoblast-specific genes during osteogenic differentiation and new bone formation in mandibular condyles.

Full Text

The Full Text of this article is available as a PDF (4.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brahic M., Haase A. T. Detection of viral sequences of low reiteration frequency by in situ hybridization. Proc Natl Acad Sci U S A. 1978 Dec;75(12):6125–6129. doi: 10.1073/pnas.75.12.6125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Caplan A. I., Syftestad G., Osdoby P. The development of embryonic bone and cartilage in tissue culture. Clin Orthop Relat Res. 1983 Apr;(174):243–263. [PubMed] [Google Scholar]
  3. Castagnola P., Dozin B., Moro G., Cancedda R. Changes in the expression of collagen genes show two stages in chondrocyte differentiation in vitro. J Cell Biol. 1988 Feb;106(2):461–467. doi: 10.1083/jcb.106.2.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Celeste A. J., Rosen V., Buecker J. L., Kriz R., Wang E. A., Wozney J. M. Isolation of the human gene for bone gla protein utilizing mouse and rat cDNA clones. EMBO J. 1986 Aug;5(8):1885–1890. doi: 10.1002/j.1460-2075.1986.tb04440.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  6. Chu M. L., Myers J. C., Bernard M. P., Ding J. F., Ramirez F. Cloning and characterization of five overlapping cDNAs specific for the human pro alpha 1(I) collagen chain. Nucleic Acids Res. 1982 Oct 11;10(19):5925–5934. doi: 10.1093/nar/10.19.5925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cowell H. R., Hunziker E. B., Rosenberg L. The role of hypertrophic chondrocytes in endochondral ossification and in the development of secondary centers of ossification. J Bone Joint Surg Am. 1987 Feb;69(2):159–161. [PubMed] [Google Scholar]
  8. Crelin E. S., Koch W. E. An autoradiographic study of chondrocyte transformation into chondroclasts and osteocytes during bone formation in vitro. Anat Rec. 1967 Aug;158(4):473–483. doi: 10.1002/ar.1091580410. [DOI] [PubMed] [Google Scholar]
  9. Deschepper C. F., Mellon S. H., Cumin F., Baxter J. D., Ganong W. F. Analysis by immunocytochemistry and in situ hybridization of renin and its mRNA in kidney, testis, adrenal, and pituitary of the rat. Proc Natl Acad Sci U S A. 1986 Oct;83(19):7552–7556. doi: 10.1073/pnas.83.19.7552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Franzen A., Heinegard D., Solursh M. Evidence for sequential appearance of cartilage matrix proteins in developing mouse limbs and in cultures of mouse mesenchymal cells. Differentiation. 1987;36(3):199–210. doi: 10.1111/j.1432-0436.1987.tb00194.x. [DOI] [PubMed] [Google Scholar]
  11. Hafen E., Levine M., Garber R. L., Gehring W. J. An improved in situ hybridization method for the detection of cellular RNAs in Drosophila tissue sections and its application for localizing transcripts of the homeotic Antennapedia gene complex. EMBO J. 1983;2(4):617–623. doi: 10.1002/j.1460-2075.1983.tb01472.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Holland P. W., Harper S. J., McVey J. H., Hogan B. L. In vivo expression of mRNA for the Ca++-binding protein SPARC (osteonectin) revealed by in situ hybridization. J Cell Biol. 1987 Jul;105(1):473–482. doi: 10.1083/jcb.105.1.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. KNESE K. H., KNOOP A. M. [Electron microscopic observations on the cells in the resorption zone of epiphysial cartilage]. Z Zellforsch Mikrosk Anat. 1961;54:1–38. [PubMed] [Google Scholar]
  14. Kahn A. J., Simmons D. J. Chondrocyte-to-osteocyte transformation in grafts of perichondrium-free epiphyseal cartilage. Clin Orthop Relat Res. 1977 Nov-Dec;(129):299–304. doi: 10.1097/00003086-197711000-00042. [DOI] [PubMed] [Google Scholar]
  15. Kuhlman R. E., McNamee M. J. The biochemical importance of the hypertrophic cartilage cell area to enchondral bone formation. J Bone Joint Surg Am. 1970 Jul;52(5):1025–1032. [PubMed] [Google Scholar]
  16. Lewinson D., Silbermann M. Parathyroid hormone stimulates proliferation of chondroprogenitor cells in vitro. Calcif Tissue Int. 1986 Mar;38(3):155–162. doi: 10.1007/BF02556875. [DOI] [PubMed] [Google Scholar]
  17. Lian J., Stewart C., Puchacz E., Mackowiak S., Shalhoub V., Collart D., Zambetti G., Stein G. Structure of the rat osteocalcin gene and regulation of vitamin D-dependent expression. Proc Natl Acad Sci U S A. 1989 Feb;86(4):1143–1147. doi: 10.1073/pnas.86.4.1143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Livne E., Schmidt J., Closs E. I., Silbermann M., Erfle V. Effects of leukemogenic retroviruses on condylar cartilage in vitro: an ultrastructural study. Calcif Tissue Int. 1989 Jan;44(1):25–35. doi: 10.1007/BF02556237. [DOI] [PubMed] [Google Scholar]
  19. Lutfi A. M. The fate of chondrocytes during cartilage erosion in the growing tibia in the domestic fowl (Gallus domesticus). Acta Anat (Basel) 1971;79(1):27–35. doi: 10.1159/000143620. [DOI] [PubMed] [Google Scholar]
  20. Mark M. P., Prince C. W., Oosawa T., Gay S., Bronckers A. L., Butler W. T. Immunohistochemical demonstration of a 44-KD phosphoprotein in developing rat bones. J Histochem Cytochem. 1987 Jul;35(7):707–715. doi: 10.1177/35.7.3295029. [DOI] [PubMed] [Google Scholar]
  21. Marks S. C., Jr, Popoff S. N. Bone cell biology: the regulation of development, structure, and function in the skeleton. Am J Anat. 1988 Sep;183(1):1–44. doi: 10.1002/aja.1001830102. [DOI] [PubMed] [Google Scholar]
  22. Mason I. J., Taylor A., Williams J. G., Sage H., Hogan B. L. Evidence from molecular cloning that SPARC, a major product of mouse embryo parietal endoderm, is related to an endothelial cell 'culture shock' glycoprotein of Mr 43,000. EMBO J. 1986 Jul;5(7):1465–1472. doi: 10.1002/j.1460-2075.1986.tb04383.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Moos M., Gallwitz D. Structure of two human beta-actin-related processed genes one of which is located next to a simple repetitive sequence. EMBO J. 1983;2(5):757–761. doi: 10.1002/j.1460-2075.1983.tb01496.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Murthy G. P., Rajalakshmi R., Ramakrishnan C. V. Developmental pattern of alkaline phosphatase in soluble and particulate fractions of rat skull cap and femur. Calcif Tissue Int. 1986 Sep;39(3):185–190. doi: 10.1007/BF02555116. [DOI] [PubMed] [Google Scholar]
  25. Nomura S., Wills A. J., Edwards D. R., Heath J. K., Hogan B. L. Developmental expression of 2ar (osteopontin) and SPARC (osteonectin) RNA as revealed by in situ hybridization. J Cell Biol. 1988 Feb;106(2):441–450. doi: 10.1083/jcb.106.2.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sandberg M., Vuorio E. Localization of types I, II, and III collagen mRNAs in developing human skeletal tissues by in situ hybridization. J Cell Biol. 1987 Apr;104(4):1077–1084. doi: 10.1083/jcb.104.4.1077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schmidt J., Closs E. I., Livne E., Erfle V., Silbermann M. Biochemical characterization of a virus-induced osteosarcoma-like osseous lesion in vitro. Calcif Tissue Int. 1989 Oct;45(4):232–242. doi: 10.1007/BF02556043. [DOI] [PubMed] [Google Scholar]
  28. Schmidt J., Livne E., Erfle V., Gössner W., Silbermann M. Morphology and in vivo growth characteristics of an atypical murine proliferative osseous lesion induced in vitro. Cancer Res. 1986 Jun;46(6):3090–3098. [PubMed] [Google Scholar]
  29. Shimomura Y., Wezeman F. H., Ray R. D. The growth cartilage plate of the rat rib: cellular differentiation. Clin Orthop Relat Res. 1973 Jan-Feb;(90):246–254. [PubMed] [Google Scholar]
  30. Silbermann M., Frommer J. The nature of endochondral ossification in the mandibular condyle of the mouse. Anat Rec. 1972 Apr;172(4):659–667. doi: 10.1002/ar.1091720406. [DOI] [PubMed] [Google Scholar]
  31. Silbermann M., Frommer J. Ultrastructure of developing cartilage in the mandibular condyle of the mouse. Acta Anat (Basel) 1974;90(3):330–346. doi: 10.1159/000144342. [DOI] [PubMed] [Google Scholar]
  32. Silbermann M., Lewinson D., Gonen H., Lizarbe M. A., von der Mark K. In vitro transformation of chondroprogenitor cells into osteoblasts and the formation of new membrane bone. Anat Rec. 1983 Aug;206(4):373–383. doi: 10.1002/ar.1092060404. [DOI] [PubMed] [Google Scholar]
  33. Silbermann M., Maor G. Receptor-mediated glucocorticoid inhibition of cell proliferation in mouse growth cartilage in vitro. Acta Endocrinol (Copenh) 1985 Mar;108(3):343–350. doi: 10.1530/acta.0.1080343. [DOI] [PubMed] [Google Scholar]
  34. Silbermann M., Schmidt J., Livne E., von der Mark K., Erfle V. In vitro induction of osteosarcomalike lesion by transformation of differentiating skeletal precursor cells with FBR murine osteosarcoma virus. Calcif Tissue Int. 1987 Oct;41(4):208–217. doi: 10.1007/BF02555240. [DOI] [PubMed] [Google Scholar]
  35. Stenner D. D., Tracy R. P., Riggs B. L., Mann K. G. Human platelets contain and secrete osteonectin, a major protein of mineralized bone. Proc Natl Acad Sci U S A. 1986 Sep;83(18):6892–6896. doi: 10.1073/pnas.83.18.6892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Terao M., Mintz B. Cloning and characterization of a cDNA coding for mouse placental alkaline phosphatase. Proc Natl Acad Sci U S A. 1987 Oct;84(20):7051–7055. doi: 10.1073/pnas.84.20.7051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wolf H., Haus M., Wilmes E. Persistence of Epstein-Barr virus in the parotid gland. J Virol. 1984 Sep;51(3):795–798. doi: 10.1128/jvi.51.3.795-798.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Yoon K. G., Rutledge S. J., Buenaga R. F., Rodan G. A. Characterization of the rat osteocalcin gene: stimulation of promoter activity by 1,25-dihydroxyvitamin D3. Biochemistry. 1988 Nov 15;27(23):8521–8526. doi: 10.1021/bi00423a003. [DOI] [PubMed] [Google Scholar]
  39. Yoon K., Buenaga R., Rodan G. A. Tissue specificity and developmental expression of rat osteopontin. Biochem Biophys Res Commun. 1987 Nov 13;148(3):1129–1136. doi: 10.1016/s0006-291x(87)80250-4. [DOI] [PubMed] [Google Scholar]
  40. Yoshioka C., Yagi T. Electron microscopic observations on the fate of hypertrophic chondrocytes in condylar cartilage of rat mandible. J Craniofac Genet Dev Biol. 1988;8(3):253–264. [PubMed] [Google Scholar]
  41. von der Mark K. Immunological studies on collagen type transition in chondrogenesis. Curr Top Dev Biol. 1980;14(Pt 2):199–225. doi: 10.1016/s0070-2153(08)60195-7. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES