Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1990 Apr 1;110(4):1253–1260. doi: 10.1083/jcb.110.4.1253

Purified N-cadherin is a potent substrate for the rapid induction of neurite outgrowth

PMCID: PMC2116071  PMID: 2324197

Abstract

N-cadherin is the predominant mediator of calcium-dependent adhesion in the nervous system (Takeichi, M. 1988. Development (Camb.). 102: 639- 655). Investigations using antibodies to block N-cadherin function (Bixby, J.L., R.L. Pratt, J. Lilien, and L.F. Reichardt. 1987. Proc. Natl. Acad. Sci. USA. 84:2555-2569; Bixby, J.L., J. Lilien, and L.F. Reichardt. 1988. J. Cell Biol. 107:353-362; Tomaselli, K.J., K.N. Neugebauer, J.L. Bixby, J. Lilien, and L.F. Reichardt. 1988. Neuron. 1:33-43) or transfection of the N-cadherin gene into heterologous cell lines (Matsunaga, M., K. Hatta, A. Nagafuchi, and M. Takeichi. 1988. Nature (Lond.). 334:62-64) have provided evidence that N-cadherin, alone or in combination with other molecules, can participate in the induction of neurite extension. We have developed an affinity purification procedure for the isolation of whole N-cadherin from chick brain and have used the isolated protein as a substrate for neurite outgrowth. N-cadherin promotes the rapid extension of neurites from chick ciliary ganglion neurons, which extend few or no neurites on adhesive but noninducing substrates such as polylysine, tissue culture plastic, and collagens. N-cadherin is extremely potent, more so than the L1 adhesion molecule, and comparable to the extracellular matrix protein laminin. Compared to laminin, however. N-cadherin promotes outgrowth from ciliary ganglion neurons extremely rapidly and with a distinct morphology. These results provide a direct demonstration that N-cadherin is sufficient to induce neurite outgrowth when substrate bound and suggest that the mechanism(s) involved may differ from that induced by laminin.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BORNSTEIN M. B. Reconstituted rattail collagen used as substrate for tissue cultures on coverslips in Maximow slides and roller tubes. Lab Invest. 1958 Mar-Apr;7(2):134–137. [PubMed] [Google Scholar]
  2. Bixby J. L., Lilien J., Reichardt L. F. Identification of the major proteins that promote neuronal process outgrowth on Schwann cells in vitro. J Cell Biol. 1988 Jul;107(1):353–361. doi: 10.1083/jcb.107.1.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bixby J. L., Pratt R. S., Lilien J., Reichardt L. F. Neurite outgrowth on muscle cell surfaces involves extracellular matrix receptors as well as Ca2+-dependent and -independent cell adhesion molecules. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2555–2559. doi: 10.1073/pnas.84.8.2555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bixby J. L. Protein kinase C is involved in laminin stimulation of neurite outgrowth. Neuron. 1989 Sep;3(3):287–297. doi: 10.1016/0896-6273(89)90253-5. [DOI] [PubMed] [Google Scholar]
  5. Bixby J. L., Reichardt L. F. The expression and localization of synaptic vesicle antigens at neuromuscular junctions in vitro. J Neurosci. 1985 Nov;5(11):3070–3080. doi: 10.1523/JNEUROSCI.05-11-03070.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brümmendorf T., Wolff J. M., Frank R., Rathjen F. G. Neural cell recognition molecule F11: homology with fibronectin type III and immunoglobulin type C domains. Neuron. 1989 Apr;2(4):1351–1361. doi: 10.1016/0896-6273(89)90073-1. [DOI] [PubMed] [Google Scholar]
  7. Chang S., Rathjen F. G., Raper J. A. Extension of neurites on axons is impaired by antibodies against specific neural cell surface glycoproteins. J Cell Biol. 1987 Feb;104(2):355–362. doi: 10.1083/jcb.104.2.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Crittenden S. L., Pratt R. S., Cook J. H., Balsamo J., Lilien J. Immunologically unique and common domains within a family of proteins related to the retina Ca2+-dependent cell adhesion molecule, NcalCAM. Development. 1987 Dec;101(4):729–740. doi: 10.1242/dev.101.4.729. [DOI] [PubMed] [Google Scholar]
  9. Crittenden S. L., Rutishauser U., Lilien J. Identification of two structural types of calcium-dependent adhesion molecules in the chicken embryo. Proc Natl Acad Sci U S A. 1988 May;85(10):3464–3468. doi: 10.1073/pnas.85.10.3464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Daniloff J. K., Levi G., Grumet M., Rieger F., Edelman G. M. Altered expression of neuronal cell adhesion molecules induced by nerve injury and repair. J Cell Biol. 1986 Sep;103(3):929–945. doi: 10.1083/jcb.103.3.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Doherty P., Barton C. H., Dickson G., Seaton P., Rowett L. H., Moore S. E., Gower H. J., Walsh F. S. Neuronal process outgrowth of human sensory neurons on monolayers of cells transfected with cDNAs for five human N-CAM isoforms. J Cell Biol. 1989 Aug;109(2):789–798. doi: 10.1083/jcb.109.2.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Duband J. L., Dufour S., Hatta K., Takeichi M., Edelman G. M., Thiery J. P. Adhesion molecules during somitogenesis in the avian embryo. J Cell Biol. 1987 May;104(5):1361–1374. doi: 10.1083/jcb.104.5.1361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Grunwald G. B., Pratt R. S., Lilien J. Enzymic dissection of embryonic cell adhesive mechanisms. III. Immunological identification of a component of the calcium-dependent adhesive system of embryonic chick neural retina cells. J Cell Sci. 1982 Jun;55:69–83. doi: 10.1242/jcs.55.1.69. [DOI] [PubMed] [Google Scholar]
  14. Johnson P. W., Abramow-Newerly W., Seilheimer B., Sadoul R., Tropak M. B., Arquint M., Dunn R. J., Schachner M., Roder J. C. Recombinant myelin-associated glycoprotein confers neural adhesion and neurite outgrowth function. Neuron. 1989 Sep;3(3):377–385. doi: 10.1016/0896-6273(89)90262-6. [DOI] [PubMed] [Google Scholar]
  15. Lagenaur C., Lemmon V. An L1-like molecule, the 8D9 antigen, is a potent substrate for neurite extension. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7753–7757. doi: 10.1073/pnas.84.21.7753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lander A. D., Fujii D. K., Reichardt L. F. Laminin is associated with the "neurite outgrowth-promoting factors" found in conditioned media. Proc Natl Acad Sci U S A. 1985 Apr;82(7):2183–2187. doi: 10.1073/pnas.82.7.2183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lemmon V., Farr K. L., Lagenaur C. L1-mediated axon outgrowth occurs via a homophilic binding mechanism. Neuron. 1989 Jun;2(6):1597–1603. doi: 10.1016/0896-6273(89)90048-2. [DOI] [PubMed] [Google Scholar]
  18. Manthorpe M., Engvall E., Ruoslahti E., Longo F. M., Davis G. E., Varon S. Laminin promotes neuritic regeneration from cultured peripheral and central neurons. J Cell Biol. 1983 Dec;97(6):1882–1890. doi: 10.1083/jcb.97.6.1882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Martini R., Schachner M. Immunoelectron microscopic localization of neural cell adhesion molecules (L1, N-CAM, and MAG) and their shared carbohydrate epitope and myelin basic protein in developing sciatic nerve. J Cell Biol. 1986 Dec;103(6 Pt 1):2439–2448. doi: 10.1083/jcb.103.6.2439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Matsunaga M., Hatta K., Nagafuchi A., Takeichi M. Guidance of optic nerve fibres by N-cadherin adhesion molecules. Nature. 1988 Jul 7;334(6177):62–64. doi: 10.1038/334062a0. [DOI] [PubMed] [Google Scholar]
  21. Matsunaga M., Hatta K., Takeichi M. Role of N-cadherin cell adhesion molecules in the histogenesis of neural retina. Neuron. 1988 Jun;1(4):289–295. doi: 10.1016/0896-6273(88)90077-3. [DOI] [PubMed] [Google Scholar]
  22. Nagafuchi A., Takeichi M. Cell binding function of E-cadherin is regulated by the cytoplasmic domain. EMBO J. 1988 Dec 1;7(12):3679–3684. doi: 10.1002/j.1460-2075.1988.tb03249.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Neugebauer K. M., Tomaselli K. J., Lilien J., Reichardt L. F. N-cadherin, NCAM, and integrins promote retinal neurite outgrowth on astrocytes in vitro. J Cell Biol. 1988 Sep;107(3):1177–1187. doi: 10.1083/jcb.107.3.1177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ranscht B. Sequence of contactin, a 130-kD glycoprotein concentrated in areas of interneuronal contact, defines a new member of the immunoglobulin supergene family in the nervous system. J Cell Biol. 1988 Oct;107(4):1561–1573. doi: 10.1083/jcb.107.4.1561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rathjen F. G., Wolff J. M., Chang S., Bonhoeffer F., Raper J. A. Neurofascin: a novel chick cell-surface glycoprotein involved in neurite-neurite interactions. Cell. 1987 Dec 4;51(5):841–849. doi: 10.1016/0092-8674(87)90107-3. [DOI] [PubMed] [Google Scholar]
  26. Schneider C., Newman R. A., Sutherland D. R., Asser U., Greaves M. F. A one-step purification of membrane proteins using a high efficiency immunomatrix. J Biol Chem. 1982 Sep 25;257(18):10766–10769. [PubMed] [Google Scholar]
  27. Seilheimer B., Schachner M. Studies of adhesion molecules mediating interactions between cells of peripheral nervous system indicate a major role for L1 in mediating sensory neuron growth on Schwann cells in culture. J Cell Biol. 1988 Jul;107(1):341–351. doi: 10.1083/jcb.107.1.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Shirayoshi Y., Hatta K., Hosoda M., Tsunasawa S., Sakiyama F., Takeichi M. Cadherin cell adhesion molecules with distinct binding specificities share a common structure. EMBO J. 1986 Oct;5(10):2485–2488. doi: 10.1002/j.1460-2075.1986.tb04525.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Steinberg M. S., Armstrong P. B., Granger R. E. On the recovery of adhesiveness by trypsin-dissociated cells. J Membr Biol. 1973;13(2):97–128. doi: 10.1007/BF01868223. [DOI] [PubMed] [Google Scholar]
  30. Takeichi M. Functional correlation between cell adhesive properties and some cell surface proteins. J Cell Biol. 1977 Nov;75(2 Pt 1):464–474. doi: 10.1083/jcb.75.2.464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Takeichi M. The cadherins: cell-cell adhesion molecules controlling animal morphogenesis. Development. 1988 Apr;102(4):639–655. doi: 10.1242/dev.102.4.639. [DOI] [PubMed] [Google Scholar]
  32. Tomaselli K. J., Neugebauer K. M., Bixby J. L., Lilien J., Reichardt L. F. N-cadherin and integrins: two receptor systems that mediate neuronal process outgrowth on astrocyte surfaces. Neuron. 1988 Mar;1(1):33–43. doi: 10.1016/0896-6273(88)90207-3. [DOI] [PubMed] [Google Scholar]
  33. Tomaselli K. J., Reichardt L. F., Bixby J. L. Distinct molecular interactions mediate neuronal process outgrowth on non-neuronal cell surfaces and extracellular matrices. J Cell Biol. 1986 Dec;103(6 Pt 2):2659–2672. doi: 10.1083/jcb.103.6.2659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Vallee R. B. Purification of brain microtubules and microtubule-associated protein 1 using taxol. Methods Enzymol. 1986;134:104–115. doi: 10.1016/0076-6879(86)34079-5. [DOI] [PubMed] [Google Scholar]
  35. Volk T., Geiger B. A 135-kd membrane protein of intercellular adherens junctions. EMBO J. 1984 Oct;3(10):2249–2260. doi: 10.1002/j.1460-2075.1984.tb02123.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Volk T., Geiger B. A-CAM: a 135-kD receptor of intercellular adherens junctions. II. Antibody-mediated modulation of junction formation. J Cell Biol. 1986 Oct;103(4):1451–1464. doi: 10.1083/jcb.103.4.1451. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES