Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1990 Apr 1;110(4):1341–1352. doi: 10.1083/jcb.110.4.1341

An isoform of ankyrin is localized at nodes of Ranvier in myelinated axons of central and peripheral nerves

PMCID: PMC2116078  PMID: 2139035

Abstract

Two variants of ankyrin have been distinguished in rat brain tissue using antibodies: a broadly distributed isoform (ankyrinB) that represents the major form of ankyrin in brain and another isoform with a restricted distribution (ankyrinR) that shares epitopes with erythrocyte ankyrin. The ankyrinR isoform was localized by immunofluorescence in cryosections of rat spinal cord gray matter and myelinated central and peripheral nerves to: (a) perikarya and initial axonal segments of neuron cells, (b) nodes of Ranvier of myelinated nerve with no detectable labeling in other areas of the myelinated axons, and (c) the axolemma of unmyelinated axons. Immunogold EM on ultrathin cryosections of myelinated nerve showed that ankyrinR was localized on the cytoplasmic face of the axolemma and was restricted to the nodal and, in some cases, paranodal area. The major isoform of ankyrin in brain (ankyrinB) displayed a broad distribution on glial and neuronal cells of the gray matter and a mainly glial distribution in central myelinated axons with no significant labeling on the axolemma. These results show that (a) ankyrin isoforms display a differential distribution on glial and neuronal cells of the nervous tissue; (b) an isoform of ankyrin codistributes with the voltage-dependent sodium channel in both myelinated and unmyelinated nerve fibers. Ankyrin interacts in vitro with the voltage-dependent sodium channel (Srinivasan, Y., L. Elmer, J. Davis, V. Bennett, and K. Angelides. 1988. Nature (Lond.). 333:177-180). A specific interaction of an isoform of ankyrin with the sodium channel thus may play an important role in the morphogenesis and/or maintenance of the node of Ranvier.

Full Text

The Full Text of this article is available as a PDF (4.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angelides K. J., Elmer L. W., Loftus D., Elson E. Distribution and lateral mobility of voltage-dependent sodium channels in neurons. J Cell Biol. 1988 Jun;106(6):1911–1925. doi: 10.1083/jcb.106.6.1911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ariyasu R. G., Nichol J. A., Ellisman M. H. Localization of sodium/potassium adenosine triphosphatase in multiple cell types of the murine nervous system with antibodies raised against the enzyme from kidney. J Neurosci. 1985 Oct;5(10):2581–2596. doi: 10.1523/JNEUROSCI.05-10-02581.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barres B. A., Chun L. L., Corey D. P. Glial and neuronal forms of the voltage-dependent sodium channel: characteristics and cell-type distribution. Neuron. 1989 Apr;2(4):1375–1388. doi: 10.1016/0896-6273(89)90076-7. [DOI] [PubMed] [Google Scholar]
  4. Bennett V., Davis J., Fowler W. E. Brain spectrin, a membrane-associated protein related in structure and function to erythrocyte spectrin. Nature. 1982 Sep 9;299(5879):126–131. doi: 10.1038/299126a0. [DOI] [PubMed] [Google Scholar]
  5. Bennett V., Davis J. Immunoreactive forms of human erythrocyte ankyrin are localized in mitotic structures in cultured cells and are associated with microtubules in brain. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 2):647–657. doi: 10.1101/sqb.1982.046.01.061. [DOI] [PubMed] [Google Scholar]
  6. Bennett V. Proteins involved in membrane--cytoskeleton association in human erythrocytes: spectrin, ankyrin, and band 3. Methods Enzymol. 1983;96:313–324. doi: 10.1016/s0076-6879(83)96029-9. [DOI] [PubMed] [Google Scholar]
  7. Bennett V., Stenbuck P. J. Association between ankyrin and the cytoplasmic domain of band 3 isolated from the human erythrocyte membrane. J Biol Chem. 1980 Jul 10;255(13):6424–6432. [PubMed] [Google Scholar]
  8. Bennett V., Stenbuck P. J. Human erythrocyte ankyrin. Purification and properties. J Biol Chem. 1980 Mar 25;255(6):2540–2548. [PubMed] [Google Scholar]
  9. Bennett V. The membrane skeleton of human erythrocytes and its implications for more complex cells. Annu Rev Biochem. 1985;54:273–304. doi: 10.1146/annurev.bi.54.070185.001421. [DOI] [PubMed] [Google Scholar]
  10. Black J. A., Foster R. E., Waxman S. G. Freeze-fracture ultrastructure of rat C.N.S. and P.N.S. nonmyelinated axolemma. J Neurocytol. 1981 Dec;10(6):981–993. doi: 10.1007/BF01258525. [DOI] [PubMed] [Google Scholar]
  11. Catterall W. A. The molecular basis of neuronal excitability. Science. 1984 Feb 17;223(4637):653–661. doi: 10.1126/science.6320365. [DOI] [PubMed] [Google Scholar]
  12. Davis J. Q., Bennett V. Association of brain ankyrin with brain membranes and isolation of active proteolytic fragments of membrane-associated ankyrin-binding protein(s). J Biol Chem. 1986 Dec 5;261(34):16198–16206. [PubMed] [Google Scholar]
  13. Davis J. Q., Bennett V. Brain ankyrin. A membrane-associated protein with binding sites for spectrin, tubulin, and the cytoplasmic domain of the erythrocyte anion channel. J Biol Chem. 1984 Nov 10;259(21):13550–13559. [PubMed] [Google Scholar]
  14. Davis J. Q., Bennett V. Brain ankyrin. Purification of a 72,000 Mr spectrin-binding domain. J Biol Chem. 1984 Feb 10;259(3):1874–1881. [PubMed] [Google Scholar]
  15. Davis J., Davis L., Bennett V. Diversity in membrane binding sites of ankyrins. Brain ankyrin, erythrocyte ankyrin, and processed erythrocyte ankyrin associate with distinct sites in kidney microsomes. J Biol Chem. 1989 Apr 15;264(11):6417–6426. [PubMed] [Google Scholar]
  16. Drenckhahn D., Bennett V. Polarized distribution of Mr 210,000 and 190,000 analogs of erythrocyte ankyrin along the plasma membrane of transporting epithelia, neurons and photoreceptors. Eur J Cell Biol. 1987 Jun;43(3):479–486. [PubMed] [Google Scholar]
  17. Ellisman M. H. Molecular specializations of the axon membrane at nodes of Ranvier are not dependent upon myelination. J Neurocytol. 1979 Dec;8(6):719–735. doi: 10.1007/BF01206672. [DOI] [PubMed] [Google Scholar]
  18. Fambrough D. M., Wolitzky B. A., Pumplin D. W. Developmental and regulatory aspects of the sodium- and potassium-ion-stimulated ATPase in avian nerve and muscle. Soc Gen Physiol Ser. 1985;39:265–282. [PubMed] [Google Scholar]
  19. Hall T. G., Bennett V. Regulatory domains of erythrocyte ankyrin. J Biol Chem. 1987 Aug 5;262(22):10537–10545. [PubMed] [Google Scholar]
  20. Howe C. L., Sacramone L. M., Mooseker M. S., Morrow J. S. Mechanisms of cytoskeletal regulation: modulation of membrane affinity in avian brush border and erythrocyte spectrins. J Cell Biol. 1985 Oct;101(4):1379–1385. doi: 10.1083/jcb.101.4.1379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Koenig E., Repasky E. A regional analysis of alpha-spectrin in the isolated Mauthner neuron and in isolated axons of the goldfish and rabbit. J Neurosci. 1985 Mar;5(3):705–714. doi: 10.1523/JNEUROSCI.05-03-00705.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Koob R., Zimmermann M., Schoner W., Drenckhahn D. Colocalization and coprecipitation of ankyrin and Na+,K+-ATPase in kidney epithelial cells. Eur J Cell Biol. 1988 Feb;45(2):230–237. [PubMed] [Google Scholar]
  23. Lazarides E., Nelson W. J., Kasamatsu T. Segregation of two spectrin forms in the chicken optic system: a mechanism for establishing restricted membrane-cytoskeletal domains in neurons. Cell. 1984 Feb;36(2):269–278. doi: 10.1016/0092-8674(84)90220-4. [DOI] [PubMed] [Google Scholar]
  24. Lombet A., Laduron P., Mourre C., Jacomet Y., Lazdunski M. Axonal transport of the voltage-dependent Na+ channel protein identified by its tetrodotoxin binding site in rat sciatic nerves. Brain Res. 1985 Oct 14;345(1):153–158. doi: 10.1016/0006-8993(85)90846-7. [DOI] [PubMed] [Google Scholar]
  25. Marchesi V. T. Stabilizing infrastructure of cell membranes. Annu Rev Cell Biol. 1985;1:531–561. doi: 10.1146/annurev.cb.01.110185.002531. [DOI] [PubMed] [Google Scholar]
  26. Mirsky R., Jessen K. R., Schachner M., Goridis C. Distribution of the adhesion molecules N-CAM and L1 on peripheral neurons and glia in adult rats. J Neurocytol. 1986 Dec;15(6):799–815. doi: 10.1007/BF01625196. [DOI] [PubMed] [Google Scholar]
  27. Morrow J. S., Cianci C. D., Ardito T., Mann A. S., Kashgarian M. Ankyrin links fodrin to the alpha subunit of Na,K-ATPase in Madin-Darby canine kidney cells and in intact renal tubule cells. J Cell Biol. 1989 Feb;108(2):455–465. doi: 10.1083/jcb.108.2.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nelson W. J., Lazarides E. Goblin (ankyrin) in striated muscle: identification of the potential membrane receptor for erythroid spectrin in muscle cells. Proc Natl Acad Sci U S A. 1984 Jun;81(11):3292–3296. doi: 10.1073/pnas.81.11.3292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nelson W. J., Lazarides E. The patterns of expression of two ankyrin isoforms demonstrate distinct steps in the assembly of the membrane skeleton in neuronal morphogenesis. Cell. 1984 Dec;39(2 Pt 1):309–320. doi: 10.1016/0092-8674(84)90009-6. [DOI] [PubMed] [Google Scholar]
  30. Nelson W. J., Veshnock P. J. Ankyrin binding to (Na+ + K+)ATPase and implications for the organization of membrane domains in polarized cells. Nature. 1987 Aug 6;328(6130):533–536. doi: 10.1038/328533a0. [DOI] [PubMed] [Google Scholar]
  31. Noda M., Ikeda T., Kayano T., Suzuki H., Takeshima H., Kurasaki M., Takahashi H., Numa S. Existence of distinct sodium channel messenger RNAs in rat brain. Nature. 1986 Mar 13;320(6058):188–192. doi: 10.1038/320188a0. [DOI] [PubMed] [Google Scholar]
  32. Peters A. The node of Ranvier in the central nervous system. Q J Exp Physiol Cogn Med Sci. 1966 Jul;51(3):229–236. doi: 10.1113/expphysiol.1966.sp001852. [DOI] [PubMed] [Google Scholar]
  33. Riederer B. M., Zagon I. S., Goodman S. R. Brain spectrin(240/235) and brain spectrin(240/235E): two distinct spectrin subtypes with different locations within mammalian neural cells. J Cell Biol. 1986 Jun;102(6):2088–2097. doi: 10.1083/jcb.102.6.2088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Ritchie J. M., Rogart R. B., Strichartz G. R. A new method for labelling saxitoxin and its binding to non-myelinated fibres of the rabbit vagus, lobster walking leg, and garfish olfactory nerves. J Physiol. 1976 Oct;261(2):477–494. doi: 10.1113/jphysiol.1976.sp011569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rosenbluth J. Intramembranous particle distribution at the node of Ranvier and adjacent axolemma in myelinated axons of the frog brain. J Neurocytol. 1976 Dec;5(6):731–745. doi: 10.1007/BF01181584. [DOI] [PubMed] [Google Scholar]
  36. Srinivasan Y., Elmer L., Davis J., Bennett V., Angelides K. Ankyrin and spectrin associate with voltage-dependent sodium channels in brain. Nature. 1988 May 12;333(6169):177–180. doi: 10.1038/333177a0. [DOI] [PubMed] [Google Scholar]
  37. Steiner J. P., Walke H. T., Jr, Bennett V. Calcium/calmodulin inhibits direct binding of spectrin to synaptosomal membranes. J Biol Chem. 1989 Feb 15;264(5):2783–2791. [PubMed] [Google Scholar]
  38. Suzuki H., Beckh S., Kubo H., Yahagi N., Ishida H., Kayano T., Noda M., Numa S. Functional expression of cloned cDNA encoding sodium channel III. FEBS Lett. 1988 Feb 8;228(1):195–200. doi: 10.1016/0014-5793(88)80615-x. [DOI] [PubMed] [Google Scholar]
  39. Sweadner K. J. Isozymes of the Na+/K+-ATPase. Biochim Biophys Acta. 1989 May 9;988(2):185–220. doi: 10.1016/0304-4157(89)90019-1. [DOI] [PubMed] [Google Scholar]
  40. Tokuyasu K. T. Application of cryoultramicrotomy to immunocytochemistry. J Microsc. 1986 Aug;143(Pt 2):139–149. doi: 10.1111/j.1365-2818.1986.tb02772.x. [DOI] [PubMed] [Google Scholar]
  41. Trapp B. D., Andrews S. B., Wong A., O'Connell M., Griffin J. W. Co-localization of the myelin-associated glycoprotein and the microfilament components, F-actin and spectrin, in Schwann cells of myelinated nerve fibres. J Neurocytol. 1989 Feb;18(1):47–60. doi: 10.1007/BF01188423. [DOI] [PubMed] [Google Scholar]
  42. Waxman S. G., Foster R. E. Ionic channel distribution and heterogeneity of the axon membrane in myelinated fibers. Brain Res. 1980 Oct;203(2):205–234. doi: 10.1016/0165-0173(80)90008-9. [DOI] [PubMed] [Google Scholar]
  43. Waxman S. G., Ritchie J. M. Organization of ion channels in the myelinated nerve fiber. Science. 1985 Jun 28;228(4707):1502–1507. doi: 10.1126/science.2409596. [DOI] [PubMed] [Google Scholar]
  44. Wiley-Livingston C., Ellisman M. H. Development of axonal membrane specializations defines nodes of Ranvier and precedes Schwann cell myelin elaboration. Dev Biol. 1980 Oct;79(2):334–355. doi: 10.1016/0012-1606(80)90120-7. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES