Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1990 Apr 1;110(4):1055–1066. doi: 10.1083/jcb.110.4.1055

Identification of a 275-kD protein associated with the apical surfaces of sensory hair cells in the avian inner ear

PMCID: PMC2116079  PMID: 2182645

Abstract

Immunological techniques have been used to generate both polyclonal and monoclonal antibodies specific for the apical ends of sensory hair cells in the avian inner ear. The hair cell antigen recognized by these antibodies is soluble in nonionic detergent, behaves on sucrose gradients primarily as a 16S particle, and, after immunoprecipitation, migrates as a polypeptide with a relative molecular mass of 275 kD on 5% SDS gels under reducing conditions. The antigen can be detected with scanning immunoelectron microscopy on the apical surface of the cell and on the stereocilia bundle but not on the kinocilium. Double label studies indicate that the entire stereocilia bundle is stained in the lagena macula (a vestibular organ), whereas in the basilar papilla (an auditory organ) only the proximal region of the stereocilia bundle nearest to the apical surface is stained. The monoclonal anti-hair cell antibodies do not stain brain, tongue, lung, liver, heart, crop, gizzard, small intestine, skeletal muscle, feather, skin, or eye tissues but do specifically stain renal corpuscles in the kidney. Experiments using organotypic cultures of the embryonic lagena macula indicate that the antibodies cause a significant increase in the steady- state stiffness of the stereocilia bundle but do not inhibit mechanotransduction. The antibodies should provide a suitable marker and/or tool for the purification of the apical sensory membrane of the hair cell.

Full Text

The Full Text of this article is available as a PDF (4.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carlson S. S., Kelly R. B. An antiserum specific for cholinergic synaptic vesicles from electric organ. J Cell Biol. 1980 Oct;87(1):98–103. doi: 10.1083/jcb.87.1.98. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Caulfield J. P., Reid J. J., Farquhar M. G. Alterations of the glomerular epithelium in acute aminonucleoside nephrosis. Evidence for formation of occluding junctions and epithelial cell detachment. Lab Invest. 1976 Jan;34(1):43–59. [PubMed] [Google Scholar]
  3. Hudspeth A. J. Extracellular current flow and the site of transduction by vertebrate hair cells. J Neurosci. 1982 Jan;2(1):1–10. doi: 10.1523/JNEUROSCI.02-01-00001.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kaloyanides G. J., Pastoriza-Munoz E. Aminoglycoside nephrotoxicity. Kidney Int. 1980 Nov;18(5):571–582. doi: 10.1038/ki.1980.175. [DOI] [PubMed] [Google Scholar]
  5. Kerjaschki D., Sharkey D. J., Farquhar M. G. Identification and characterization of podocalyxin--the major sialoprotein of the renal glomerular epithelial cell. J Cell Biol. 1984 Apr;98(4):1591–1596. doi: 10.1083/jcb.98.4.1591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Köhler G., Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975 Aug 7;256(5517):495–497. doi: 10.1038/256495a0. [DOI] [PubMed] [Google Scholar]
  7. Latta H., Johnston W. H., Stanley T. M. Sialoglycoproteins and filtration barriers in the glomerular capillary wall. J Ultrastruct Res. 1975 Jun;51(3):354–376. doi: 10.1016/s0022-5320(75)80100-6. [DOI] [PubMed] [Google Scholar]
  8. Lim D. J. Functional structure of the organ of Corti: a review. Hear Res. 1986;22:117–146. doi: 10.1016/0378-5955(86)90089-4. [DOI] [PubMed] [Google Scholar]
  9. Michael A. F., Blau E., Vernier R. L. Glomerular polyanion. Alteration in aminonucleoside nephrosis. Lab Invest. 1970 Dec;23(6):649–657. [PubMed] [Google Scholar]
  10. Mohos S. C., Skoza L. Glomerular sialoprotein. Science. 1969 Jun 27;164(3887):1519–1521. doi: 10.1126/science.164.3887.1519. [DOI] [PubMed] [Google Scholar]
  11. Ohmori H. Mechanical stimulation and Fura-2 fluorescence in the hair bundle of dissociated hair cells of the chick. J Physiol. 1988 May;399:115–137. doi: 10.1113/jphysiol.1988.sp017071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Prieto J. J., Merchan J. A. Regional specialization of the cell coat in the hair cells of the organ of Corti. Hear Res. 1987 Dec 31;31(3):223–227. doi: 10.1016/0378-5955(87)90191-2. [DOI] [PubMed] [Google Scholar]
  13. Rice R. H., Means G. E. Radioactive labeling of proteins in vitro. J Biol Chem. 1971 Feb 10;246(3):831–832. [PubMed] [Google Scholar]
  14. Richardson G. P., Fiedler W., Fox G. Q. Development of the electromotor system of Torpedo marmorata: distribution of extracellular matrix and cytoskeletal components during acetylcholine receptor focalization. Cell Tissue Res. 1987 Mar;247(3):651–665. doi: 10.1007/BF00215760. [DOI] [PubMed] [Google Scholar]
  15. Richardson G. P., Russell I. J., Duance V. C., Bailey A. J. Polypeptide composition of the mammalian tectorial membrane. Hear Res. 1987;25(1):45–60. doi: 10.1016/0378-5955(87)90078-5. [DOI] [PubMed] [Google Scholar]
  16. Russell I. J., Richardson G. P. The morphology and physiology of hair cells in organotypic cultures of the mouse cochlea. Hear Res. 1987 Nov;31(1):9–24. doi: 10.1016/0378-5955(87)90210-3. [DOI] [PubMed] [Google Scholar]
  17. Ryan G. B., Karnovsky M. J. An ultrastructural study of the mechanisms of proteinuria in aminonucleoside nephrosis. Kidney Int. 1975 Oct;8(4):219–232. doi: 10.1038/ki.1975.105. [DOI] [PubMed] [Google Scholar]
  18. Santi P. A., Anderson C. B. A newly identified surface coat on cochlear hair cells. Hear Res. 1987;27(1):47–65. doi: 10.1016/0378-5955(87)90025-6. [DOI] [PubMed] [Google Scholar]
  19. Santi P. A., Anderson C. B. Alcian blue staining of cochlear hair cell stereocilia and other cochlear tissues. Hear Res. 1986;23(2):153–160. doi: 10.1016/0378-5955(86)90012-2. [DOI] [PubMed] [Google Scholar]
  20. Walker J. H., Jones R. T., Obrocki J., Richardson G. P., Stadler H. Presynaptic plasma membranes and synaptic vesicles of cholinergic nerve endings demonstrated by means of specific antisera. Cell Tissue Res. 1982;223(1):101–116. doi: 10.1007/BF00221502. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES