Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1990 Apr 1;110(4):1111–1122. doi: 10.1083/jcb.110.4.1111

Nucleus-associated microtubules help determine the division plane of plant epidermal cells: avoidance of four-way junctions and the role of cell geometry

PMCID: PMC2116080  PMID: 2324196

Abstract

To investigate the spatial relationship between the nucleus and the cortical division site, epidermal cells were selected in which the separation between these two areas is large. Avoiding enzyme treatment and air drying, Datura stramonium cells were labeled with antitubulin antibodies and the three-dimensional aspect of the cytoskeletons was reconstructed using computer-aided optical sectioning. In vacuolated cells preparing for division, the nucleus migrates into the center of the cell, suspended by transvacuolar strands. These strands are now shown to contain continuous bundles of microtubules which bridge the nucleus to the cortex. These nucleus-radiating microtubules adopt different configurations in cells of different shape. In elongated cells with more or less parallel side walls, oblique strands radiating from the nucleus to the long side walls are presumably unstable, for they are progressively realigned into a transverse disc (the phragmosome) as broad, cortical, preprophase bands (PPBs) become tighter. The phragmosome and the PPB are both known predictors of the division plane and our observations indicate that they align simultaneously in elongated epidermal cells. These observations suggest another hypothesis: that the PPB may contain microtubules polymerized from the nuclear surface. In elongated cells, the majority of the radiating microtubules, therefore, come to anchor the nucleus in the transverse plane, consistent with the observed tendency of such cells to divide perpendicular to the long axis. In nonrectangular isodiametric epidermal cells, which approximate regular hexagons in section, the radial microtubular strands emanating from the nucleus tend to remain associated with the middle of each subtending cell wall. The strands are not reorganized into a single dominant transverse bar, but remain as a starlike array until mitosis. PPBs in these cells are not as tight; they may only be a sparse accumulation of microtubules, even forming along non-diametrical radii. This arrangement is consistent with the irregular division patterns observed in epidermal mosaics of isodiametric D. stramonium cells. The various conformations of the radial strands can be modeled by springs held in two-dimensional hexagonal frames, and by soap bubbles in three-dimensional hexagonal frames, suggesting that the division plane may, by analogy, be selected by minimal path criteria. Such behavior offers a cytoplasmic explanation of long-standing empirically derived "rules" which state that the new cell wall tends to meet the maternal wall at right angles. The radial premitotic strands and their analogues avoid taking the longer path to the vertex of an angle where a cross wall is already present between neighboring cells.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text

The Full Text of this article is available as a PDF (4.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agard D. A., Hiraoka Y., Shaw P., Sedat J. W. Fluorescence microscopy in three dimensions. Methods Cell Biol. 1989;30:353–377. doi: 10.1016/s0091-679x(08)60986-3. [DOI] [PubMed] [Google Scholar]
  2. Hahne G., Hoffmann F. The effect of laser microsurgery on cytoplasmic strands and cytoplasmic streaming in isolated plant protoplasts. Eur J Cell Biol. 1984 Mar;33(2):175–179. [PubMed] [Google Scholar]
  3. Kilmartin J. V., Wright B., Milstein C. Rat monoclonal antitubulin antibodies derived by using a new nonsecreting rat cell line. J Cell Biol. 1982 Jun;93(3):576–582. doi: 10.1083/jcb.93.3.576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Palevitz B. A. Actin in the preprophase band of Allium cepa. J Cell Biol. 1987 Jun;104(6):1515–1519. doi: 10.1083/jcb.104.6.1515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Pickett-Heaps J. D., Northcote D. H. Organization of microtubules and endoplasmic reticulum during mitosis and cytokinesis in wheat meristems. J Cell Sci. 1966 Mar;1(1):109–120. doi: 10.1242/jcs.1.1.109. [DOI] [PubMed] [Google Scholar]
  6. Pickett-Heaps J. D. Preprophase microtubules and stomatal differentiation; some effects of centrifugation on symmetrical and asymmetrical cell division. J Ultrastruct Res. 1969 Apr;27(1):24–44. [PubMed] [Google Scholar]
  7. Rawlins D. J., Shaw P. J. Three-dimensional organization of chromosomes of Crepis capillaris by optical tomography. J Cell Sci. 1988 Nov;91(Pt 3):401–414. doi: 10.1242/jcs.91.3.401. [DOI] [PubMed] [Google Scholar]
  8. Sinnott E. W., Bloch R. Cytoplasmic Behavior during Division of Vacuolate Plant Cells. Proc Natl Acad Sci U S A. 1940 Apr 15;26(4):223–227. doi: 10.1073/pnas.26.4.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Tiwari S. C., Wick S. M., Williamson R. E., Gunning B. E. Cytoskeleton and integration of cellular function in cells of higher plants. J Cell Biol. 1984 Jul;99(1 Pt 2):63s–69s. doi: 10.1083/jcb.99.1.63s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Traas J. A., Doonan J. H., Rawlins D. J., Shaw P. J., Watts J., Lloyd C. W. An actin network is present in the cytoplasm throughout the cell cycle of carrot cells and associates with the dividing nucleus. J Cell Biol. 1987 Jul;105(1):387–395. doi: 10.1083/jcb.105.1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Wick S. M., Duniec J. Immunofluorescence microscopy of tubulin and microtubule arrays in plant cells. I. Preprophase band development and concomitant appearance of nuclear envelope-associated tubulin. J Cell Biol. 1983 Jul;97(1):235–243. doi: 10.1083/jcb.97.1.235. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES