Abstract
The blood-brain barrier is characterized by still poorly understood barrier and transport functions performed by specialized endothelial cells. Hybridoma technology has been used to identify a protein termed neurothelin that is specific for these endothelial cells. Neurothelin is defined by the species-specific mouse mAb 1W5 raised against lentil- lectin-binding proteins of neural tissue from embryonic chick. In the posthatch chick, neurothelin expression is found on endothelial cells within the brain but not on those of the systemic vascular system. Injection of the monoclonal antibody in vivo leads to labeling of brain capillaries, indicating that the corresponding antigen is expressed on the luminal surface of brain endothelial cells. Transplantation of embryonic mouse brain onto the chick chorioallantoic membrane results in rodent brain vascularization by the avian vascular system. Subsequently, normally mAb 1W5-negative endothelial cells, originating from blood vessels of the chick chorioallantoic membrane, are induced to express neurothelin when they are in contact with mouse neural tissue. In contrast to differentiated brain neurons that do not express neurothelin, neurons of the nonvascularized chick retina synthesize neurothelin. However, neurothelin is not found on retinal ganglion cell axons terminating on 1W5-negative brain cells. 1W5 immunoreactivity was also found in the pigment epithelium that forms the blood-eye barrier. Putting epithelial cells into culture results in concentration of neurothelin at cell-cell contact sites, leaving other cell surface areas devoid of antigen. Therefore, the distribution of neurothelin appears to be regulated by cell-cell interactions. In Western blot analysis, neurothelin was identified as a protein with a molecular mass of approximately 43 kD. The protein bears at least one intramolecular disulfide bridge and sulfated glucuronic acid as well as alpha-D- substituted mannose/glucose moieties. The exclusive neurothelin expression in the posthatch chick on endothelial cells of the central nervous system but not on systemic endothelial cells makes neurothelin a marker specific for blood-brain barrier-forming endothelial cells. The spatiotemporally regulated neurothelin expression in neurons suggests an interaction between vascularization and neuronal differentiation.
Full Text
The Full Text of this article is available as a PDF (6.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ansorge W. Fast and sensitive detection of protein and DNA bands by treatment with potassium permanganate. J Biochem Biophys Methods. 1985 May;11(1):13–20. doi: 10.1016/0165-022x(85)90037-5. [DOI] [PubMed] [Google Scholar]
- Ausprunk D. H., Knighton D. R., Folkman J. Vascularization of normal and neoplastic tissues grafted to the chick chorioallantois. Role of host and preexisting graft blood vessels. Am J Pathol. 1975 Jun;79(3):597–618. [PMC free article] [PubMed] [Google Scholar]
- Bastiani M. J., Harrelson A. L., Snow P. M., Goodman C. S. Expression of fasciclin I and II glycoproteins on subsets of axon pathways during neuronal development in the grasshopper. Cell. 1987 Mar 13;48(5):745–755. doi: 10.1016/0092-8674(87)90072-9. [DOI] [PubMed] [Google Scholar]
- Betz A. L., Firth J. A., Goldstein G. W. Polarity of the blood-brain barrier: distribution of enzymes between the luminal and antiluminal membranes of brain capillary endothelial cells. Brain Res. 1980 Jun 16;192(1):17–28. doi: 10.1016/0006-8993(80)91004-5. [DOI] [PubMed] [Google Scholar]
- Betz A. L., Goldstein G. W. Polarity of the blood-brain barrier: neutral amino acid transport into isolated brain capillaries. Science. 1978 Oct 13;202(4364):225–227. doi: 10.1126/science.211586. [DOI] [PubMed] [Google Scholar]
- Betz A. L., Goldstein G. W. Specialized properties and solute transport in brain capillaries. Annu Rev Physiol. 1986;48:241–250. doi: 10.1146/annurev.ph.48.030186.001325. [DOI] [PubMed] [Google Scholar]
- Bradbury M. W. The structure and function of the blood-brain barrier. Fed Proc. 1984 Feb;43(2):186–190. [PubMed] [Google Scholar]
- Brendel K., Meezan E., Carlson E. C. Isolated brain microvessels: a purified, metabolically active preparation from bovine cerebral cortex. Science. 1974 Sep 13;185(4155):953–955. doi: 10.1126/science.185.4155.953. [DOI] [PubMed] [Google Scholar]
- Brightman M. W., Reese T. S. Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol. 1969 Mar;40(3):648–677. doi: 10.1083/jcb.40.3.648. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CLELAND W. W. DITHIOTHREITOL, A NEW PROTECTIVE REAGENT FOR SH GROUPS. Biochemistry. 1964 Apr;3:480–482. doi: 10.1021/bi00892a002. [DOI] [PubMed] [Google Scholar]
- COULOMBRE A. J. Correlations of structural and biochemical changes in the developing retina of the chick. Am J Anat. 1955 Jan;96(1):153–189. doi: 10.1002/aja.1000960106. [DOI] [PubMed] [Google Scholar]
- DeBault L. E., Cancilla P. A. gamma-Glutamyl transpeptidase in isolated brain endothelial cells: induction by glial cells in vitro. Science. 1980 Feb 8;207(4431):653–655. doi: 10.1126/science.6101511. [DOI] [PubMed] [Google Scholar]
- Dick A. P., Harik S. I., Klip A., Walker D. M. Identification and characterization of the glucose transporter of the blood-brain barrier by cytochalasin B binding and immunological reactivity. Proc Natl Acad Sci U S A. 1984 Nov;81(22):7233–7237. doi: 10.1073/pnas.81.22.7233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dodd J., Morton S. B., Karagogeos D., Yamamoto M., Jessell T. M. Spatial regulation of axonal glycoprotein expression on subsets of embryonic spinal neurons. Neuron. 1988 Apr;1(2):105–116. doi: 10.1016/0896-6273(88)90194-8. [DOI] [PubMed] [Google Scholar]
- Halfter W., Claviez M., Schwarz U. Preferential adhesion of tectal membranes to anterior embryonic chick retina neurites. Nature. 1981 Jul 2;292(5818):67–70. doi: 10.1038/292067a0. [DOI] [PubMed] [Google Scholar]
- Halfter W., Newgreen D. F., Sauter J., Schwarz U. Oriented axon outgrowth from avian embryonic retinae in culture. Dev Biol. 1983 Jan;95(1):56–64. doi: 10.1016/0012-1606(83)90006-4. [DOI] [PubMed] [Google Scholar]
- Halfter W., Reckhaus W., Kröger S. Nondirected axonal growth on basal lamina from avian embryonic neural retina. J Neurosci. 1987 Nov;7(11):3712–3722. doi: 10.1523/JNEUROSCI.07-11-03712.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hawkes R., Niday E., Gordon J. A dot-immunobinding assay for monoclonal and other antibodies. Anal Biochem. 1982 Jan 1;119(1):142–147. doi: 10.1016/0003-2697(82)90677-7. [DOI] [PubMed] [Google Scholar]
- Hoffman S., Sorkin B. C., White P. C., Brackenbury R., Mailhammer R., Rutishauser U., Cunningham B. A., Edelman G. M. Chemical characterization of a neural cell adhesion molecule purified from embryonic brain membranes. J Biol Chem. 1982 Jul 10;257(13):7720–7729. [PubMed] [Google Scholar]
- Hughes W. F., McLoon S. C. Ganglion cell death during normal retinal development in the chick: comparisons with cell death induced by early target field destruction. Exp Neurol. 1979 Dec;66(3):587–601. doi: 10.1016/0014-4886(79)90204-8. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- LaVail J. H., Cowan W. M. The development of the chick optic tectum. I. Normal morphology and cytoarchitectonic development. Brain Res. 1971 May 21;28(3):391–419. doi: 10.1016/0006-8993(71)90053-9. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lis H., Sharon N. The biochemistry of plant lectins (phytohemagglutinins). Annu Rev Biochem. 1973;42(0):541–574. doi: 10.1146/annurev.bi.42.070173.002545. [DOI] [PubMed] [Google Scholar]
- Newsome D. A., Kenyon K. R. Collagen production in vitro by the retinal pigmented epithelium of the chick embryo. Dev Biol. 1973 Jun;32(2):387–400. doi: 10.1016/0012-1606(73)90249-2. [DOI] [PubMed] [Google Scholar]
- Pardridge W. M., Yang J., Eisenberg J., Mietus L. J. Antibodies to blood-brain barrier bind selectively to brain capillary endothelial lateral membranes and to a 46K protein. J Cereb Blood Flow Metab. 1986 Apr;6(2):203–211. doi: 10.1038/jcbfm.1986.33. [DOI] [PubMed] [Google Scholar]
- Patel N. H., Snow P. M., Goodman C. S. Characterization and cloning of fasciclin III: a glycoprotein expressed on a subset of neurons and axon pathways in Drosophila. Cell. 1987 Mar 27;48(6):975–988. doi: 10.1016/0092-8674(87)90706-9. [DOI] [PubMed] [Google Scholar]
- Pollerberg G. E., Burridge K., Krebs K. E., Goodman S. R., Schachner M. The 180-kD component of the neural cell adhesion molecule N-CAM is involved in cell-cell contacts and cytoskeleton-membrane interactions. Cell Tissue Res. 1987 Oct;250(1):227–236. doi: 10.1007/BF00214676. [DOI] [PubMed] [Google Scholar]
- Raviola G. The structural basis of the blood-ocular barriers. Exp Eye Res. 1977;25 (Suppl):27–63. doi: 10.1016/s0014-4835(77)80009-2. [DOI] [PubMed] [Google Scholar]
- Reese T. S., Karnovsky M. J. Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol. 1967 Jul;34(1):207–217. doi: 10.1083/jcb.34.1.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Risau W., Hallmann R., Albrecht U. Differentiation-dependent expression of proteins in brain endothelium during development of the blood-brain barrier. Dev Biol. 1986 Oct;117(2):537–545. doi: 10.1016/0012-1606(86)90321-0. [DOI] [PubMed] [Google Scholar]
- Risau W., Hallmann R., Albrecht U., Henke-Fahle S. Brain induces the expression of an early cell surface marker for blood-brain barrier-specific endothelium. EMBO J. 1986 Dec 1;5(12):3179–3183. doi: 10.1002/j.1460-2075.1986.tb04627.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schlosshauer B., Blum A. S., Mendez-Otero R., Barnstable C. J., Constantine-Paton M. Developmental regulation of ganglioside antigens recognized by the JONES antibody. J Neurosci. 1988 Feb;8(2):580–592. doi: 10.1523/JNEUROSCI.08-02-00580.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schlosshauer B., Schwarz U., Rutishauser U. Topological distribution of different forms of neural cell adhesion molecule in the developing chick visual system. Nature. 1984 Jul 12;310(5973):141–143. doi: 10.1038/310141a0. [DOI] [PubMed] [Google Scholar]
- Schwarting G. A., Jungalwala F. B., Chou D. K., Boyer A. M., Yamamoto M. Sulfated glucuronic acid-containing glycoconjugates are temporally and spatially regulated antigens in the developing mammalian nervous system. Dev Biol. 1987 Mar;120(1):65–76. doi: 10.1016/0012-1606(87)90104-7. [DOI] [PubMed] [Google Scholar]
- Sobue G., Pleasure D. Astroglial proliferation and phenotype are modulated by neuronal plasma membrane. Brain Res. 1984 Dec 17;324(1):175–179. doi: 10.1016/0006-8993(84)90639-5. [DOI] [PubMed] [Google Scholar]
- Stewart P. A., Wiley M. J. Developing nervous tissue induces formation of blood-brain barrier characteristics in invading endothelial cells: a study using quail--chick transplantation chimeras. Dev Biol. 1981 May;84(1):183–192. doi: 10.1016/0012-1606(81)90382-1. [DOI] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wakai S., Hirokawa N. Development of the blood-brain barrier to horseradish peroxidase in the chick embryo. Cell Tissue Res. 1978 Dec 28;195(2):195–203. doi: 10.1007/BF00236719. [DOI] [PubMed] [Google Scholar]
- Wallenfels B. Developmental and mutational changes of glycoproteins in the mouse neuronal retina: studies with bovine galactosyltransferase. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3223–3227. doi: 10.1073/pnas.76.7.3223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walter J., Kern-Veits B., Huf J., Stolze B., Bonhoeffer F. Recognition of position-specific properties of tectal cell membranes by retinal axons in vitro. Development. 1987 Dec;101(4):685–696. doi: 10.1242/dev.101.4.685. [DOI] [PubMed] [Google Scholar]