Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1990 Apr 1;110(4):1173–1185. doi: 10.1083/jcb.110.4.1173

Identification of novel proteins unique to either transverse tubules (TS28) or the sarcolemma (SL50) in rabbit skeletal muscle

PMCID: PMC2116099  PMID: 2157716

Abstract

Novel proteins unique to either transverse tubules (TS28) or the sarcolemma (SL50) have been identified and characterized, and their in situ distribution in rabbit skeletal muscle has been determined using monoclonal antibodies. TS28, defined by mAb IXE112, was shown to have an apparent relative molecular mass of 28,000 D. Biochemical studies showed that TS28 is a minor membrane protein in isolated transverse tubular vesicles. Immunofluorescence and immunoelectron microscopical studies showed that TS28 is localized to the transverse tubules and in some subsarcolemmal vesicles possibly corresponding to the subgroup of caveolae connecting the transverse tubules with the sarcolemma. In contrast, TS28 is absent from the lateral portion of the sarcolemma. Immunofluorescence studies also showed that TS28 is more densely distributed in type II (fast) than in type I (slow) myofibers. Although TS28 and the 1,4-dihydropyridine receptor are both localized to transverse tubules and subsarcolemmal vesicles, TS28 is not a wheat germ agglutinin (WGA)-binding glycoprotein and does not appear to copurify with the 1,4-dihydropyridine receptor after detergent solubilization of transverse tubular membranes. SL50, defined by mAb IVD31, was shown to have an apparent relative molecular mass of 50,000 D. Biochemical studies showed that SL50 is not related to the 52,000-D (beta subunit) of the dihydropyridine receptor but does bind to WGA- Sepharose. Immunofluorescence labeling imaged by standard and confocal microscopy showed that SL50 is associated with the sarcolemma but apparently absent from the transverse tubules. Immunofluorescence labeling also showed that the density of SL50 in type II (fast) myofibers is indistinguishable from that of type I (slow) myofibers. The functions of TS28 and SL50 are presently unknown. However, the distinct distribution of TS28 to the transverse tubules and subsarcolemmal vesicles as determined by immunocytochemical labeling suggests that TS28 may be directly involved in excitation-contraction coupling. Our results demonstrate that, although transverse tubules are continuous with the sarcolemma, each of these membranes contain one or more unique proteins, thus supporting the idea that they each have a distinct protein composition.

Full Text

The Full Text of this article is available as a PDF (4.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blake M. S., Johnston K. H., Russell-Jones G. J., Gotschlich E. C. A rapid, sensitive method for detection of alkaline phosphatase-conjugated anti-antibody on Western blots. Anal Biochem. 1984 Jan;136(1):175–179. doi: 10.1016/0003-2697(84)90320-8. [DOI] [PubMed] [Google Scholar]
  2. Campbell K. P., Franzini-Armstrong C., Shamoo A. E. Further characterization of light and heavy sarcoplasmic reticulum vesicles. Identification of the 'sarcoplasmic reticulum feet' associated with heavy sarcoplasmic reticulum vesicles. Biochim Biophys Acta. 1980 Oct 16;602(1):97–116. doi: 10.1016/0005-2736(80)90293-x. [DOI] [PubMed] [Google Scholar]
  3. Campbell K. P., Kahl S. D. Association of dystrophin and an integral membrane glycoprotein. Nature. 1989 Mar 16;338(6212):259–262. doi: 10.1038/338259a0. [DOI] [PubMed] [Google Scholar]
  4. Campbell K. P., Knudson C. M., Imagawa T., Leung A. T., Sutko J. L., Kahl S. D., Raab C. R., Madson L. Identification and characterization of the high affinity [3H]ryanodine receptor of the junctional sarcoplasmic reticulum Ca2+ release channel. J Biol Chem. 1987 May 15;262(14):6460–6463. [PubMed] [Google Scholar]
  5. Campbell K. P., Leung A. T., Sharp A. H. The biochemistry and molecular biology of the dihydropyridine-sensitive calcium channel. Trends Neurosci. 1988 Oct;11(10):425–430. doi: 10.1016/0166-2236(88)90193-2. [DOI] [PubMed] [Google Scholar]
  6. Caswell A. H., Lau Y. H., Brunschwig J. P. Ouabain-binding vesicles from skeletal muscle. Arch Biochem Biophys. 1976 Oct;176(2):417–430. doi: 10.1016/0003-9861(76)90184-3. [DOI] [PubMed] [Google Scholar]
  7. Catterall W. A., Seagar M. J., Takahashi M. Molecular properties of dihydropyridine-sensitive calcium channels in skeletal muscle. J Biol Chem. 1988 Mar 15;263(8):3535–3538. [PubMed] [Google Scholar]
  8. Dudek R. W., Boyne A. F. An excursion through the ultrastructural world of quick-frozen pancreatic islets. Am J Anat. 1986 Feb-Mar;175(2-3):217-43, 354. doi: 10.1002/aja.1001750209. [DOI] [PubMed] [Google Scholar]
  9. Fosset M., Jaimovich E., Delpont E., Lazdunski M. [3H]nitrendipine receptors in skeletal muscle. J Biol Chem. 1983 May 25;258(10):6086–6092. [PubMed] [Google Scholar]
  10. Gersten D. M., Marchalonis J. J. A rapid, novel method for the solid-phase derivatization of IgG antibodies for immune-affinity chromatography. J Immunol Methods. 1978;24(3-4):305–309. doi: 10.1016/0022-1759(78)90133-3. [DOI] [PubMed] [Google Scholar]
  11. Guth L., Samaha F. J. Qualitative differences between actomyosin ATPase of slow and fast mammalian muscle. Exp Neurol. 1969 Sep;25(1):138–152. doi: 10.1016/0014-4886(69)90077-6. [DOI] [PubMed] [Google Scholar]
  12. Haimovich B., Schotland D. L., Fieles W. E., Barchi R. L. Localization of sodium channel subtypes in adult rat skeletal muscle using channel-specific monoclonal antibodies. J Neurosci. 1987 Sep;7(9):2957–2966. doi: 10.1523/JNEUROSCI.07-09-02957.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Horgan D. J., Kuypers R. Isolation of transverse tubules by fractionation of sarcoplasmic reticulum preparations in ion-free sucrose density gradients. Arch Biochem Biophys. 1987 Mar;253(2):377–387. doi: 10.1016/0003-9861(87)90191-3. [DOI] [PubMed] [Google Scholar]
  14. Jorgensen A. O., Broderick R., Somlyo A. P., Somlyo A. V. Two structurally distinct calcium storage sites in rat cardiac sarcoplasmic reticulum: an electron microprobe analysis study. Circ Res. 1988 Dec;63(6):1060–1069. doi: 10.1161/01.res.63.6.1060. [DOI] [PubMed] [Google Scholar]
  15. Jorgensen A. O., Kalnins V. I., Zubrzycka E., MacLennan D. H. Assembly of the sarcoplasmic reticulum. Localization by immunofluorescence of sarcoplasmic reticulum proteins in differentiating rat skeletal muscle cell cultures. J Cell Biol. 1977 Jul;74(1):287–298. doi: 10.1083/jcb.74.1.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jorgensen A. O., Kalnins V., MacLennan D. H. Localization of sarcoplasmic reticulum proteins in rat skeletal muscle by immunofluorescence. J Cell Biol. 1979 Feb;80(2):372–384. doi: 10.1083/jcb.80.2.372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jorgensen A. O., McGuffee L. J. Immunoelectron microscopic localization of sarcoplasmic reticulum proteins in cryofixed, freeze-dried, and low temperature-embedded tissue. J Histochem Cytochem. 1987 Jul;35(7):723–732. doi: 10.1177/35.7.2953782. [DOI] [PubMed] [Google Scholar]
  18. Jorgensen A. O., Shen A. C., Arnold W., Leung A. T., Campbell K. P. Subcellular distribution of the 1,4-dihydropyridine receptor in rabbit skeletal muscle in situ: an immunofluorescence and immunocolloidal gold-labeling study. J Cell Biol. 1989 Jul;109(1):135–147. doi: 10.1083/jcb.109.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jorgensen A. O., Shen A. C., Campbell K. P., MacLennan D. H. Ultrastructural localization of calsequestrin in rat skeletal muscle by immunoferritin labeling of ultrathin frozen sections. J Cell Biol. 1983 Nov;97(5 Pt 1):1573–1581. doi: 10.1083/jcb.97.5.1573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Knudson C. M., Campbell K. P. Albumin is a major protein component of transverse tubule vesicles isolated from skeletal muscle. J Biol Chem. 1989 Jun 25;264(18):10795–10798. [PubMed] [Google Scholar]
  21. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  22. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  23. Lau Y. H., Caswell A. H., Brunschwig J. P. Isolation of transverse tubules by fractionation of triad junctions of skeletal muscle. J Biol Chem. 1977 Aug 10;252(15):5565–5574. [PubMed] [Google Scholar]
  24. Leung A. T., Imagawa T., Block B., Franzini-Armstrong C., Campbell K. P. Biochemical and ultrastructural characterization of the 1,4-dihydropyridine receptor from rabbit skeletal muscle. Evidence for a 52,000 Da subunit. J Biol Chem. 1988 Jan 15;263(2):994–1001. [PubMed] [Google Scholar]
  25. Leung A. T., Imagawa T., Campbell K. P. Structural characterization of the 1,4-dihydropyridine receptor of the voltage-dependent Ca2+ channel from rabbit skeletal muscle. Evidence for two distinct high molecular weight subunits. J Biol Chem. 1987 Jun 15;262(17):7943–7946. [PubMed] [Google Scholar]
  26. McGuffee L. J., Hurwitz L., Little S. A., Skipper B. E. A 45Ca autoradiographic and stereological study of freeze-dried smooth muscle of the guinea pig vas deferens. J Cell Biol. 1981 Jul;90(1):201–210. doi: 10.1083/jcb.90.1.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mitchell R. D., Palade P., Fleischer S. Purification of morphologically intact triad structures from skeletal muscle. J Cell Biol. 1983 Apr;96(4):1008–1016. doi: 10.1083/jcb.96.4.1008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
  29. Rayns D. G., Simpson F. O., Bertaud W. S. Surface features of striated muscle. II. Guinea-pig skeletal muscle. J Cell Sci. 1968 Dec;3(4):475–482. doi: 10.1242/jcs.3.4.475. [DOI] [PubMed] [Google Scholar]
  30. Rios E., Brum G. Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle. Nature. 1987 Feb 19;325(6106):717–720. doi: 10.1038/325717a0. [DOI] [PubMed] [Google Scholar]
  31. Rosemblatt M. S., Scales D. J. Morphological, immunological and biochemical characterization of purified transverse tubule membranes isolated from rabbit skeletal muscle. Mol Cell Biochem. 1989 May 4;87(1):57–69. doi: 10.1007/BF00421083. [DOI] [PubMed] [Google Scholar]
  32. Rosemblatt M., Hidalgo C., Vergara C., Ikemoto N. Immunological and biochemical properties of transverse tubule membranes isolated from rabbit skeletal muscle. J Biol Chem. 1981 Aug 10;256(15):8140–8148. [PubMed] [Google Scholar]
  33. Schafer D. A., Stockdale F. E. Identification of sarcolemma-associated antigens with differential distributions on fast and slow skeletal muscle fibers. J Cell Biol. 1987 Apr;104(4):967–979. doi: 10.1083/jcb.104.4.967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sharp A. H., Imagawa T., Leung A. T., Campbell K. P. Identification and characterization of the dihydropyridine-binding subunit of the skeletal muscle dihydropyridine receptor. J Biol Chem. 1987 Sep 5;262(25):12309–12315. [PubMed] [Google Scholar]
  35. Takahashi M., Seagar M. J., Jones J. F., Reber B. F., Catterall W. A. Subunit structure of dihydropyridine-sensitive calcium channels from skeletal muscle. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5478–5482. doi: 10.1073/pnas.84.15.5478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tanabe T., Beam K. G., Powell J. A., Numa S. Restoration of excitation-contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA. Nature. 1988 Nov 10;336(6195):134–139. doi: 10.1038/336134a0. [DOI] [PubMed] [Google Scholar]
  37. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. White J. G., Amos W. B., Fordham M. An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy. J Cell Biol. 1987 Jul;105(1):41–48. doi: 10.1083/jcb.105.1.41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Yuan S., Arnold W., Jorgensen A. O. Biogenesis of transverse tubules: immunocytochemical localization of a transverse tubular protein (TS28) and a sarcolemmal protein (SL50) in rabbit skeletal muscle developing in situ. J Cell Biol. 1990 Apr;110(4):1187–1198. doi: 10.1083/jcb.110.4.1187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Zampighi G., Vergara J., Ramón F. On the connection between the transverse tubules and the plasma membrane in frog semitendinosus skeletal muscle. Are caveolae the mouths of the transverse tubule system? J Cell Biol. 1975 Mar;64(3):734–740. doi: 10.1083/jcb.64.3.734. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES