Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1990 Apr 1;110(4):1067–1075. doi: 10.1083/jcb.110.4.1067

Chemoattractant-stimulated polymorphonuclear leukocytes contain two populations of actin filaments that differ in their spatial distributions and relative stabilities

PMCID: PMC2116100  PMID: 2324192

Abstract

Chemoattractants stimulate actin polymerization in lamellipodia of polymorphonuclear leukocytes. We find that removal of chemoattractant results in rapid (within 10 s at 37 degrees C) and selective depolymerization of the F-actin located in lamellipodia. Addition of 10 microM cytochalasin B, in the presence of chemoattractant, also resulted in rapid and selective depolymerization of lamellar F-actin. The elevated F-actin level induced by chemoattractant rapidly returns to the level present in unstimulated cells after (a) a 10-fold decrease in chemoattractant concentration; (b) the addition of 10 microM cytochalasin B; or (c) cooling to 4 degrees C. The F-actin levels of unstimulated cells are only slightly affected by these treatments. Based on the similar effects of cytochalasin addition and chemoattractant dilution, it is likely that both treatments result in actin depolymerization from the pointed ends of filaments. Based on our results we propose that chemoattractant-stimulated polymorphonuclear leukocytes contain two distinct populations of actin filaments. The actin filaments within the lamellipodia are highly labile and in the continued presence of chemoattractant these filaments are rapidly turning over, continually polymerizing at their plus (barbed) ends, and depolymerizing at their minus ends. In contrast, the cortical F-actin filaments of both stimulated and unstimulated cells are differentially stable.

Full Text

The Full Text of this article is available as a PDF (3.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bray D., White J. G. Cortical flow in animal cells. Science. 1988 Feb 19;239(4842):883–888. doi: 10.1126/science.3277283. [DOI] [PubMed] [Google Scholar]
  2. Brenner S. L., Korn E. D. Stimulation of actin ATPase activity by cytochalasins provides evidence for a new species of monomeric actin. J Biol Chem. 1981 Aug 25;256(16):8663–8670. [PubMed] [Google Scholar]
  3. Brenner S. L., Korn E. D. Substoichiometric concentrations of cytochalasin D inhibit actin polymerization. Additional evidence for an F-actin treadmill. J Biol Chem. 1979 Oct 25;254(20):9982–9985. [PubMed] [Google Scholar]
  4. Carlier M. F., Pantaloni D. Binding of phosphate to F-ADP-actin and role of F-ADP-Pi-actin in ATP-actin polymerization. J Biol Chem. 1988 Jan 15;263(2):817–825. [PubMed] [Google Scholar]
  5. Carson M., Weber A., Zigmond S. H. An actin-nucleating activity in polymorphonuclear leukocytes is modulated by chemotactic peptides. J Cell Biol. 1986 Dec;103(6 Pt 2):2707–2714. doi: 10.1083/jcb.103.6.2707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Casella J. F., Flanagan M. D., Lin S. Cytochalasin D inhibits actin polymerization and induces depolymerization of actin filaments formed during platelet shape change. Nature. 1981 Sep 24;293(5830):302–305. doi: 10.1038/293302a0. [DOI] [PubMed] [Google Scholar]
  7. Cooper J. A. Effects of cytochalasin and phalloidin on actin. J Cell Biol. 1987 Oct;105(4):1473–1478. doi: 10.1083/jcb.105.4.1473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Devreotes P. N., Zigmond S. H. Chemotaxis in eukaryotic cells: a focus on leukocytes and Dictyostelium. Annu Rev Cell Biol. 1988;4:649–686. doi: 10.1146/annurev.cb.04.110188.003245. [DOI] [PubMed] [Google Scholar]
  9. Fath K. R., Lasek R. J. Two classes of actin microfilaments are associated with the inner cytoskeleton of axons. J Cell Biol. 1988 Aug;107(2):613–621. doi: 10.1083/jcb.107.2.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fechheimer M., Zigmond S. H. Changes in cytoskeletal proteins of polymorphonuclear leukocytes induced by chemotactic peptides. Cell Motil. 1983;3(4):349–361. doi: 10.1002/cm.970030406. [DOI] [PubMed] [Google Scholar]
  11. Forscher P., Smith S. J. Actions of cytochalasins on the organization of actin filaments and microtubules in a neuronal growth cone. J Cell Biol. 1988 Oct;107(4):1505–1516. doi: 10.1083/jcb.107.4.1505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Glacy S. D. Subcellular distribution of rhodamine-actin microinjected into living fibroblastic cells. J Cell Biol. 1983 Oct;97(4):1207–1213. doi: 10.1083/jcb.97.4.1207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hall A. L., Schlein A., Condeelis J. Relationship of pseudopod extension to chemotactic hormone-induced actin polymerization in amoeboid cells. J Cell Biochem. 1988 Jul;37(3):285–299. doi: 10.1002/jcb.240370304. [DOI] [PubMed] [Google Scholar]
  14. Hartwig J. H., Yin H. L. The organization and regulation of the macrophage actin skeleton. Cell Motil Cytoskeleton. 1988;10(1-2):117–125. doi: 10.1002/cm.970100116. [DOI] [PubMed] [Google Scholar]
  15. Heath J. P. Direct evidence for microfilament-mediated capping of surface receptors on crawling fibroblasts. Nature. 1983 Apr 7;302(5908):532–534. doi: 10.1038/302532a0. [DOI] [PubMed] [Google Scholar]
  16. Howard T. H., Oresajo C. O. A method for quantifying F-actin in chemotactic peptide activated neutrophils: study of the effect of tBOC peptide. Cell Motil. 1985;5(6):545–557. doi: 10.1002/cm.970050609. [DOI] [PubMed] [Google Scholar]
  17. Howard T. H., Oresajo C. O. The kinetics of chemotactic peptide-induced change in F-actin content, F-actin distribution, and the shape of neutrophils. J Cell Biol. 1985 Sep;101(3):1078–1085. doi: 10.1083/jcb.101.3.1078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Korn E. D., Carlier M. F., Pantaloni D. Actin polymerization and ATP hydrolysis. Science. 1987 Oct 30;238(4827):638–644. doi: 10.1126/science.3672117. [DOI] [PubMed] [Google Scholar]
  19. Lin D. C., Tobin K. D., Grumet M., Lin S. Cytochalasins inhibit nuclei-induced actin polymerization by blocking filament elongation. J Cell Biol. 1980 Feb;84(2):455–460. doi: 10.1083/jcb.84.2.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pollard T. D. Rate constants for the reactions of ATP- and ADP-actin with the ends of actin filaments. J Cell Biol. 1986 Dec;103(6 Pt 2):2747–2754. doi: 10.1083/jcb.103.6.2747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rao K. M., Varani J. Actin polymerization induced by chemotactic peptide and concanavalin A in rat neutrophils. J Immunol. 1982 Oct;129(4):1605–1607. [PubMed] [Google Scholar]
  22. Sklar L. A., Omann G. M., Painter R. G. Relationship of actin polymerization and depolymerization to light scattering in human neutrophils: dependence on receptor occupancy and intracellular Ca++. J Cell Biol. 1985 Sep;101(3):1161–1166. doi: 10.1083/jcb.101.3.1161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Small J. V., Isenberg G., Celis J. E. Polarity of actin at the leading edge of cultured cells. Nature. 1978 Apr 13;272(5654):638–639. doi: 10.1038/272638a0. [DOI] [PubMed] [Google Scholar]
  24. Southwick F. S., Dabiri G. A., Paschetto M., Zigmond S. H. Polymorphonuclear leukocyte adherence induces actin polymerization by a transduction pathway which differs from that used by chemoattractants. J Cell Biol. 1989 Oct;109(4 Pt 1):1561–1569. doi: 10.1083/jcb.109.4.1561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Svitkina T. M., Neyfakh A. A., Jr, Bershadsky A. D. Actin cytoskeleton of spread fibroblasts appears to assemble at the cell edges. J Cell Sci. 1986 Jun;82:235–248. doi: 10.1242/jcs.82.1.235. [DOI] [PubMed] [Google Scholar]
  26. Tilney L. G., Hatano S., Ishikawa H., Mooseker M. S. The polymerization of actin: its role in the generation of the acrosomal process of certain echinoderm sperm. J Cell Biol. 1973 Oct;59(1):109–126. doi: 10.1083/jcb.59.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wallace P. J., Wersto R. P., Packman C. H., Lichtman M. A. Chemotactic peptide-induced changes in neutrophil actin conformation. J Cell Biol. 1984 Sep;99(3):1060–1065. doi: 10.1083/jcb.99.3.1060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wang Y. L. Exchange of actin subunits at the leading edge of living fibroblasts: possible role of treadmilling. J Cell Biol. 1985 Aug;101(2):597–602. doi: 10.1083/jcb.101.2.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Weber A., Northrop J., Bishop M. F., Ferrone F. A., Mooseker M. S. Nucleation of actin polymerization by villin and elongation at subcritical monomer concentration. Biochemistry. 1987 May 5;26(9):2528–2536. doi: 10.1021/bi00383a019. [DOI] [PubMed] [Google Scholar]
  30. White J. R., Naccache P. H., Sha'afi R. I. Stimulation by chemotactic factor of actin association with the cytoskeleton in rabbit neutrophils. Effects of calcium and cytochalasin B. J Biol Chem. 1983 Nov 25;258(22):14041–14047. [PubMed] [Google Scholar]
  31. Zigmond S. H., Levitsky H. I., Kreel B. J. Cell polarity: an examination of its behavioral expression and its consequences for polymorphonuclear leukocyte chemotaxis. J Cell Biol. 1981 Jun;89(3):585–592. doi: 10.1083/jcb.89.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Zigmond S. H. Mechanisms of sensing chemical gradients by polymorphonuclear leukocytes. Nature. 1974 May 31;249(456):450–452. doi: 10.1038/249450a0. [DOI] [PubMed] [Google Scholar]
  33. Zigmond S. H., Sullivan S. J. Sensory adaptation of leukocytes to chemotactic peptides. J Cell Biol. 1979 Aug;82(2):517–527. doi: 10.1083/jcb.82.2.517. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES