Abstract
Vaults are cytoplasmic ribonucleoprotein structures that display a complex morphology reminiscent of the multiple arches which form cathedral vaults, hence their name. Previous studies on rat liver vaults (Kedersha, N. L., and L. H. Rome. 1986. J. Cell Biol. 103:699- 709) have established that their composition is unlike that of any known class of RNA-containing particles in that they contain multiple copies of a unique small RNA and more than 50 copies of a single polypeptide of 104,000 Mr. We now report on the isolation of vaults from numerous species and show that vaults appear to be ubiquitous among eukaryotes, including mammals, amphibians (Rana catesbeiana and Xenopus laevis), avians (Gallus Gallus), and the lower eukaryote Dictyostelium discoideum. Electron microscopy reveals that vaults purified from these diverse species are similar both in their dimensions and morphology. The vaults from these various species are also similar in their polypeptide composition; each being composed of a major polypeptide with an approximate mass of 100 kD and several minor polypeptides with molecular masses similar to those seen in the rat. Antibodies raised against rat vaults recognize the major vault protein of all species including Dictyostelium. Vaults therefore appear to be strongly conserved and broadly distributed, suggesting that their function is essential to eukaryotic cells.
Full Text
The Full Text of this article is available as a PDF (2.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Darnell J. E., Doolittle W. F. Speculations on the early course of evolution. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1271–1275. doi: 10.1073/pnas.83.5.1271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dreyfuss G., Philipson L., Mattaj I. W. Ribonucleoprotein particles in cellular processes. J Cell Biol. 1988 May;106(5):1419–1425. doi: 10.1083/jcb.106.5.1419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fryer H. J., Davis G. E., Manthorpe M., Varon S. Lowry protein assay using an automatic microtiter plate spectrophotometer. Anal Biochem. 1986 Mar;153(2):262–266. doi: 10.1016/0003-2697(86)90090-4. [DOI] [PubMed] [Google Scholar]
- Harris S. G., Hoch S. O., Smith H. C. Chemical cross-linking of Sm and RNP antigenic proteins. Biochemistry. 1988 Jun 28;27(13):4595–4600. doi: 10.1021/bi00413a002. [DOI] [PubMed] [Google Scholar]
- Hawkes R. Identification of concanavalin A-binding proteins after sodium dodecyl sulfate--gel electrophoresis and protein blotting. Anal Biochem. 1982 Jun;123(1):143–146. doi: 10.1016/0003-2697(82)90634-0. [DOI] [PubMed] [Google Scholar]
- Kedersha N. L., Rome L. H. Isolation and characterization of a novel ribonucleoprotein particle: large structures contain a single species of small RNA. J Cell Biol. 1986 Sep;103(3):699–709. doi: 10.1083/jcb.103.3.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kedersha N. L., Rome L. H. Preparative agarose gel electrophoresis for the purification of small organelles and particles. Anal Biochem. 1986 Jul;156(1):161–170. doi: 10.1016/0003-2697(86)90168-5. [DOI] [PubMed] [Google Scholar]
- Lake J. A. Evolving ribosome structure: domains in archaebacteria, eubacteria, eocytes and eukaryotes. Annu Rev Biochem. 1985;54:507–530. doi: 10.1146/annurev.bi.54.070185.002451. [DOI] [PubMed] [Google Scholar]
- Lothstein L., Arenstorf H. P., Chung S. Y., Walker B. W., Wooley J. C., LeStourgeon W. M. General organization of protein in HeLa 40S nuclear ribonucleoprotein particles. J Cell Biol. 1985 May;100(5):1570–1581. doi: 10.1083/jcb.100.5.1570. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Merril C. R., Goldman D., Van Keuren M. L. Silver staining methods for polyacrylamide gel electrophoresis. Methods Enzymol. 1983;96:230–239. doi: 10.1016/s0076-6879(83)96021-4. [DOI] [PubMed] [Google Scholar]
- Sussman M. Cultivation and synchronous morphogenesis of Dictyostelium under controlled experimental conditions. Methods Cell Biol. 1987;28:9–29. doi: 10.1016/s0091-679x(08)61635-0. [DOI] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walter P., Lingappa V. R. Mechanism of protein translocation across the endoplasmic reticulum membrane. Annu Rev Cell Biol. 1986;2:499–516. doi: 10.1146/annurev.cb.02.110186.002435. [DOI] [PubMed] [Google Scholar]
- Weiner A. M. Eukaryotic nuclear telomeres: molecular fossils of the RNP world? Cell. 1988 Jan 29;52(2):155–158. doi: 10.1016/0092-8674(88)90501-6. [DOI] [PubMed] [Google Scholar]