Abstract
The reproduction, or duplication, of the centrosome is an important event in a cell's preparation for mitosis. We sought to determine if centrosome reproduction is regulated by the synthesis and accumulation of cyclin proteins and/or the synthesis of centrosome-specific proteins at each cell cycle. We continuously treat sea urchin eggs, starting before fertilization, with a combination of emetine and anisomycin, drugs that have separate targets in the protein synthetic pathway. These drugs inhibit the postfertilization incorporation of [35S]methionine into precipitable material by 97.3-100%. Autoradiography of SDS-PAGE gels of drug-treated zygotes reveals that [35S]methionine incorporates exclusively into material that does not enter the gel and material that runs at the dye front; no other labeled bands are detected. Fertilization events and syngamy are normal in drug- treated zygotes, but the cell cycle arrests before first mitosis. The sperm aster doubles once in all zygotes to yield two asters. In a variable but significant percentage of zygotes, the asters continue to double. This continued doubling is slower than normal, asynchronous between zygotes, and sometimes asynchronous within individual zygotes. High voltage electron microscopy of serial semithick sections from drug- treated zygotes reveals that 90% of the daughter centrosomes contain two centrioles of normal appearance. From these results, we conclude that centrosome reproduction in sea urchin zygotes is not controlled by the accumulation of cyclin proteins or the synthesis of centrosome- specific proteins at each cell cycle. New centrosomes are assembled from preexisting pools of ready-to-use subunits. Furthermore, our results indicate that centrosomal and nuclear events are regulated by separate pathways.
Full Text
The Full Text of this article is available as a PDF (2.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cross F., Roberts J., Weintraub H. Simple and complex cell cycles. Annu Rev Cell Biol. 1989;5:341–396. doi: 10.1146/annurev.cb.05.110189.002013. [DOI] [PubMed] [Google Scholar]
- Draetta G., Luca F., Westendorf J., Brizuela L., Ruderman J., Beach D. Cdc2 protein kinase is complexed with both cyclin A and B: evidence for proteolytic inactivation of MPF. Cell. 1989 Mar 10;56(5):829–838. doi: 10.1016/0092-8674(89)90687-9. [DOI] [PubMed] [Google Scholar]
- Epel D. Activation of an Na + -dependent amino acid transport system upon fertilization of sea urchin eggs. Exp Cell Res. 1972 May;72(1):74–89. doi: 10.1016/0014-4827(72)90569-1. [DOI] [PubMed] [Google Scholar]
- Epel D. Protein synthesis in sea urchin eggs: a "late" response to fertilization. Proc Natl Acad Sci U S A. 1967 Apr;57(4):899–906. doi: 10.1073/pnas.57.4.899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Euteneuer U., McIntosh J. R. Structural polarity of kinetochore microtubules in PtK1 cells. J Cell Biol. 1981 May;89(2):338–345. doi: 10.1083/jcb.89.2.338. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fuseler J. W. Repetitive procurement of mature gametes from individual sea stars and sea urchins. J Cell Biol. 1973 Jun;57(3):879–881. doi: 10.1083/jcb.57.3.879. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gautier J., Minshull J., Lohka M., Glotzer M., Hunt T., Maller J. L. Cyclin is a component of maturation-promoting factor from Xenopus. Cell. 1990 Feb 9;60(3):487–494. doi: 10.1016/0092-8674(90)90599-a. [DOI] [PubMed] [Google Scholar]
- Gould R. R., Borisy G. G. The pericentriolar material in Chinese hamster ovary cells nucleates microtubule formation. J Cell Biol. 1977 Jun;73(3):601–615. doi: 10.1083/jcb.73.3.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grainger J. L., von Brunn A., Winkler M. M. Transient synthesis of a specific set of proteins during the rapid cleavage phase of sea urchin development. Dev Biol. 1986 Apr;114(2):403–415. doi: 10.1016/0012-1606(86)90205-8. [DOI] [PubMed] [Google Scholar]
- HARRIS P. Some structural and functional aspects of the mitotic apparatus in sea urchin embryos. J Cell Biol. 1962 Sep;14:475–487. doi: 10.1083/jcb.14.3.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HINEGARDNER R. T., RAO B., FELDMAN D. E. THE DNA SYNTHETIC PERIOD DURING EARLY DEVELOPMENT OF THE SEA URCHIN EGG. Exp Cell Res. 1964 Oct;36:53–61. doi: 10.1016/0014-4827(64)90159-4. [DOI] [PubMed] [Google Scholar]
- Hall J. L., Ramanis Z., Luck D. J. Basal body/centriolar DNA: molecular genetic studies in Chlamydomonas. Cell. 1989 Oct 6;59(1):121–132. doi: 10.1016/0092-8674(89)90875-1. [DOI] [PubMed] [Google Scholar]
- King S. M., Otter T., Witman G. B. Purification and characterization of Chlamydomonas flagellar dyneins. Methods Enzymol. 1986;134:291–306. doi: 10.1016/0076-6879(86)34097-7. [DOI] [PubMed] [Google Scholar]
- Kuriyama R. Activity and stability of centrosomes in Chinese hamster ovary cells in nucleation of microtubules in vitro. J Cell Sci. 1984 Mar;66:277–295. doi: 10.1242/jcs.66.1.277. [DOI] [PubMed] [Google Scholar]
- Labbé J. C., Capony J. P., Caput D., Cavadore J. C., Derancourt J., Kaghad M., Lelias J. M., Picard A., Dorée M. MPF from starfish oocytes at first meiotic metaphase is a heterodimer containing one molecule of cdc2 and one molecule of cyclin B. EMBO J. 1989 Oct;8(10):3053–3058. doi: 10.1002/j.1460-2075.1989.tb08456.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nicklas R. B. Mitosis. Adv Cell Biol. 1971;2:225–297. doi: 10.1007/978-1-4615-9588-5_5. [DOI] [PubMed] [Google Scholar]
- Paweletz N., Mazia D., Finze E. M. Fine structural studies of the bipolarization of the mitotic apparatus in the fertilized sea urchin egg. I. The structure and behavior of centrosomes before fusion of the pronuclei. Eur J Cell Biol. 1987 Oct;44(2):195–204. [PubMed] [Google Scholar]
- Phillips S. G., Rattner J. B. Dependence of centriole formation on protein synthesis. J Cell Biol. 1976 Jul;70(1):9–19. doi: 10.1083/jcb.70.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rieder C. L. Thick and thin serial sectioning for the three-dimensional reconstruction of biological ultrastructure. Methods Cell Biol. 1981;22:215–249. doi: 10.1016/s0091-679x(08)61879-8. [DOI] [PubMed] [Google Scholar]
- Robbins E., Jentzsch G., Micali A. The centriole cycle in synchronized HeLa cells. J Cell Biol. 1968 Feb;36(2):329–339. doi: 10.1083/jcb.36.2.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schatten H., Schatten G., Mazia D., Balczon R., Simerly C. Behavior of centrosomes during fertilization and cell division in mouse oocytes and in sea urchin eggs. Proc Natl Acad Sci U S A. 1986 Jan;83(1):105–109. doi: 10.1073/pnas.83.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sluder G., Lewis K. Relationship between nuclear DNA synthesis and centrosome reproduction in sea urchin eggs. J Exp Zool. 1987 Oct;244(1):89–100. doi: 10.1002/jez.1402440111. [DOI] [PubMed] [Google Scholar]
- Sluder G., Miller F. J., Rieder C. L. Reproductive capacity of sea urchin centrosomes without centrioles. Cell Motil Cytoskeleton. 1989;13(4):264–273. doi: 10.1002/cm.970130405. [DOI] [PubMed] [Google Scholar]
- Sluder G., Miller F. J., Rieder C. L. The reproduction of centrosomes: nuclear versus cytoplasmic controls. J Cell Biol. 1986 Nov;103(5):1873–1881. doi: 10.1083/jcb.103.5.1873. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sluder G., Rieder C. L. Centriole number and the reproductive capacity of spindle poles. J Cell Biol. 1985 Mar;100(3):887–896. doi: 10.1083/jcb.100.3.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sluder G., Rieder C. L. Experimental separation of pronuclei in fertilized sea urchin eggs: chromosomes do not organize a spindle in the absence of centrosomes. J Cell Biol. 1985 Mar;100(3):897–903. doi: 10.1083/jcb.100.3.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Standart N. M., Bray S. J., George E. L., Hunt T., Ruderman J. V. The small subunit of ribonucleotide reductase is encoded by one of the most abundant translationally regulated maternal RNAs in clam and sea urchin eggs. J Cell Biol. 1985 Jun;100(6):1968–1976. doi: 10.1083/jcb.100.6.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vorobjev I. A., Nadezhdina E. S. The centrosome and its role in the organization of microtubules. Int Rev Cytol. 1987;106:227–293. doi: 10.1016/s0074-7696(08)61714-3. [DOI] [PubMed] [Google Scholar]
- Wagenaar E. B. The timing of synthesis of proteins required for mitosis in the cell cycle of the sea urchin embryo. Exp Cell Res. 1983 Apr 1;144(2):393–403. doi: 10.1016/0014-4827(83)90419-6. [DOI] [PubMed] [Google Scholar]
- Winkler M. M., Steinhardt R. A., Grainger J. L., Minning L. Dual ionic controls for the activation of protein synthesis at fertilization. Nature. 1980 Oct 9;287(5782):558–560. doi: 10.1038/287558a0. [DOI] [PubMed] [Google Scholar]