Abstract
The rotational mobility of acetylcholine receptors (AChR) in the plasma membrane of living rat myotubes in culture is measured in this study by polarized fluorescence recovery after photobleaching (PFRAP). These AChR are known to exist in two distinct classes, evident by labeling with rhodamine alpha-bungarotoxin; clustered AChR that are aggregated in a pattern of highly concentrated speckles and streaks, with each cluster occupying an area of approximately 1,000 microns 2; and nonclustered AChR that appear as diffuse labeling. PFRAP results reported here show that: (a) most clustered AChR (approximately 86%) are rotationally immobile within a time scale of at least several seconds; and (b) most nonclustered AChR (approximately 76%) are rotationally mobile with characteristic times ranging from less than 50 ms to 0.1 s. External cross-linking with the tetravalent lectin concanavalin A immobilizes many nonclustered AChR. PFRAP experiments in the presence of carbachol or cytochalasin D show that the restraints to rotational motion in clusters are remarkably immune to treatments that disperse clusters or disrupt cytoplasmic actin. The experiments also demonstrate the feasibility of using PFRAP to measure rotational diffusion on selected microscopic areas of living nondeoxygenated cells labeled with standard fluorescence probes over a very wide range of time scales, and they also indicate what technical improvements would make PFRAP even more practicable.
Full Text
The Full Text of this article is available as a PDF (1.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson M. J., Cohen M. W. Nerve-induced and spontaneous redistribution of acetylcholine receptors on cultured muscle cells. J Physiol. 1977 Jul;268(3):757–773. doi: 10.1113/jphysiol.1977.sp011880. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Axelrod D., Ravdin P. M., Podleski T. R. Control of acetylcholine receptor mobility and distribution in cultured muscle membranes. A fluorescence study. Biochim Biophys Acta. 1978 Jul 20;511(1):23–38. doi: 10.1016/0005-2736(78)90062-7. [DOI] [PubMed] [Google Scholar]
- Axelrod D., Ravdin P., Koppel D. E., Schlessinger J., Webb W. W., Elson E. L., Podleski T. R. Lateral motion of fluorescently labeled acetylcholine receptors in membranes of developing muscle fibers. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4594–4598. doi: 10.1073/pnas.73.12.4594. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barald K. F., Phillips G. D., Jay J. C., Mizukami I. F. A component in mammalian muscle synaptic basal lamina induces clustering of acetylcholine receptors. Prog Brain Res. 1987;71:397–408. doi: 10.1016/s0079-6123(08)61841-5. [DOI] [PubMed] [Google Scholar]
- Bartholdi M., Barrantes F. J., Jovin T. M. Rotational molecular dynamics of the membrane-bound acetylcholine receptor revealed by phosphorescence spectroscopy. Eur J Biochem. 1981 Nov;120(2):389–397. doi: 10.1111/j.1432-1033.1981.tb05716.x. [DOI] [PubMed] [Google Scholar]
- Bloch R. J. Actin at receptor-rich domains of isolated acetylcholine receptor clusters. J Cell Biol. 1986 Apr;102(4):1447–1458. doi: 10.1083/jcb.102.4.1447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bloch R. J., Hall Z. W. Cytoskeletal components of the vertebrate neuromuscular junction: vinculin, alpha-actinin, and filamin. J Cell Biol. 1983 Jul;97(1):217–223. doi: 10.1083/jcb.97.1.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bloch R. J. Loss of acetylcholine receptor clusters induced by treatment of cultured rat myotubes with carbachol. J Neurosci. 1986 Mar;6(3):691–700. doi: 10.1523/JNEUROSCI.06-03-00691.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bloch R. J., Velez M., Krikorian J. G., Axelrod D. Microfilaments and actin-associated proteins at sites of membrane-substrate attachment within acetylcholine receptor clusters. Exp Cell Res. 1989 Jun;182(2):583–596. doi: 10.1016/0014-4827(89)90261-9. [DOI] [PubMed] [Google Scholar]
- Brisson A., Unwin P. N. Quaternary structure of the acetylcholine receptor. Nature. 1985 Jun 6;315(6019):474–477. doi: 10.1038/315474a0. [DOI] [PubMed] [Google Scholar]
- Brown P. K. Rhodopsin rotates in the visual receptor membrane. Nat New Biol. 1972 Mar 15;236(63):35–38. doi: 10.1038/newbio236035a0. [DOI] [PubMed] [Google Scholar]
- Bursztajn S., Berman S. A., McManaman J. L., Watson M. L. Insertion and internalization of acetylcholine receptors at clustered and diffuse domains on cultured myotubes. J Cell Biol. 1985 Jul;101(1):104–111. doi: 10.1083/jcb.101.1.104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cherry R. J. Rotational and lateral diffusion of membrane proteins. Biochim Biophys Acta. 1979 Dec 20;559(4):289–327. doi: 10.1016/0304-4157(79)90009-1. [DOI] [PubMed] [Google Scholar]
- Cone R. A. Rotational diffusion of rhodopsin in the visual receptor membrane. Nat New Biol. 1972 Mar 15;236(63):39–43. doi: 10.1038/newbio236039a0. [DOI] [PubMed] [Google Scholar]
- Connolly J. A., Graham A. J. Actin filaments and acetylcholine receptor clusters in embryonic chick myotubes. Eur J Cell Biol. 1985 May;37:191–195. [PubMed] [Google Scholar]
- Connolly J. A. Role of the cytoskeleton in the formation, stabilization, and removal of acetylcholine receptor clusters in cultured muscle cells. J Cell Biol. 1984 Jul;99(1 Pt 1):148–154. doi: 10.1083/jcb.99.1.148. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Criado M., Eibl H., Barrantes F. J. Functional properties of the acetylcholine receptor incorporated in model lipid membranes. Differential effects of chain length and head group of phospholipids on receptor affinity states and receptor-mediated ion translocation. J Biol Chem. 1984 Jul 25;259(14):9188–9198. [PubMed] [Google Scholar]
- Dalziel A. W., Rollins E. S., McNamee M. G. The effect of cholesterol on agonist-induced flux in reconstituted acetylcholine receptor vesicles. FEBS Lett. 1980 Dec 29;122(2):193–196. doi: 10.1016/0014-5793(80)80435-2. [DOI] [PubMed] [Google Scholar]
- Englander L. L., Rubin L. L. Acetylcholine receptor clustering and nuclear movement in muscle fibers in culture. J Cell Biol. 1987 Jan;104(1):87–95. doi: 10.1083/jcb.104.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fong T. M., McNamee M. G. Stabilization of acetylcholine receptor secondary structure by cholesterol and negatively charged phospholipids in membranes. Biochemistry. 1987 Jun 30;26(13):3871–3880. doi: 10.1021/bi00387a020. [DOI] [PubMed] [Google Scholar]
- Frank E., Fischbach G. D. Early events in neuromuscular junction formation in vitro: induction of acetylcholine receptor clusters in the postsynaptic membrane and morphology of newly formed synapses. J Cell Biol. 1979 Oct;83(1):143–158. doi: 10.1083/jcb.83.1.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- González-Rodríguez J., Acuña A. U. Probing molecular dynamics of proteins in biological membranes by optical spectroscopy: rotational diffusion. Revis Biol Celular. 1987;11:47–74. [PubMed] [Google Scholar]
- Harris D. A., Falls D. L., Fischbach G. D. Differential activation of myotube nuclei following exposure to an acetylcholine receptor-inducing factor. Nature. 1989 Jan 12;337(6203):173–176. doi: 10.1038/337173a0. [DOI] [PubMed] [Google Scholar]
- Heuser J. E., Salpeter S. R. Organization of acetylcholine receptors in quick-frozen, deep-etched, and rotary-replicated Torpedo postsynaptic membrane. J Cell Biol. 1979 Jul;82(1):150–173. doi: 10.1083/jcb.82.1.150. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirokawa N., Heuser J. E. Internal and external differentiations of the postsynaptic membrane at the neuromuscular junction. J Neurocytol. 1982 Jun;11(3):487–510. doi: 10.1007/BF01257990. [DOI] [PubMed] [Google Scholar]
- Jacobson B. S., Cronin J., Branton D. Coupling polylysine to glass beads for plasma membrane isolation. Biochim Biophys Acta. 1978 Jan 4;506(1):81–96. doi: 10.1016/0005-2736(78)90436-4. [DOI] [PubMed] [Google Scholar]
- Jacobson K., Ishihara A., Inman R. Lateral diffusion of proteins in membranes. Annu Rev Physiol. 1987;49:163–175. doi: 10.1146/annurev.ph.49.030187.001115. [DOI] [PubMed] [Google Scholar]
- Johnson P., Garland P. B. Fluorescent triplet probes for measuring the rotational diffusion of membrane proteins. Biochem J. 1982 Apr 1;203(1):313–321. doi: 10.1042/bj2030313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koppel D. E., Sheetz M. P., Schindler M. Matrix control of protein diffusion in biological membranes. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3576–3580. doi: 10.1073/pnas.78.6.3576. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lo M. M., Garland P. B., Lamprecht J., Barnard E. A. Rotational mobility of the membrane-bound acetylcholine receptor of Torpedo electric organ measured by phosphorescence depolarisation. FEBS Lett. 1980 Mar 10;111(2):407–412. doi: 10.1016/0014-5793(80)80838-6. [DOI] [PubMed] [Google Scholar]
- Middlemas D. S., Raftery M. A. Identification of subunits of acetylcholine receptor that interact with a cholesterol photoaffinity probe. Biochemistry. 1987 Mar 10;26(5):1219–1223. doi: 10.1021/bi00379a003. [DOI] [PubMed] [Google Scholar]
- Nigg E. A., Cherry R. J. Anchorage of a band 3 population at the erythrocyte cytoplasmic membrane surface: protein rotational diffusion measurements. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4702–4706. doi: 10.1073/pnas.77.8.4702. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olek A. J., Krikorian J. G., Daniels M. P. Early stages in the formation and stabilization of acetylcholine receptor aggregates on cultured myotubes: sensitivity to temperature and azide. Dev Biol. 1986 Sep;117(1):24–34. doi: 10.1016/0012-1606(86)90344-1. [DOI] [PubMed] [Google Scholar]
- Pavlath G. K., Rich K., Webster S. G., Blau H. M. Localization of muscle gene products in nuclear domains. Nature. 1989 Feb 9;337(6207):570–573. doi: 10.1038/337570a0. [DOI] [PubMed] [Google Scholar]
- Peng H. B. Cytoskeletal organization of the presynaptic nerve terminal and the acetylcholine receptor cluster in cell cultures. J Cell Biol. 1983 Aug;97(2):489–498. doi: 10.1083/jcb.97.2.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peng H. B., Phelan K. A. Early cytoplasmic specialization at the presumptive acetylcholine receptor cluster: a meshwork of thin filaments. J Cell Biol. 1984 Jul;99(1 Pt 1):344–349. doi: 10.1083/jcb.99.1.344. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peng H. B., Zhao D. Y., Xie M. Z., Shen Z. W., Jacobson K. The role of lateral migration in the formation of acetylcholine receptor clusters induced by basic polypeptide-coated latex beads. Dev Biol. 1989 Jan;131(1):197–206. doi: 10.1016/s0012-1606(89)80051-x. [DOI] [PubMed] [Google Scholar]
- Peters R., Cherry R. J. Lateral and rotational diffusion of bacteriorhodopsin in lipid bilayers: experimental test of the Saffman-Delbrück equations. Proc Natl Acad Sci U S A. 1982 Jul;79(14):4317–4321. doi: 10.1073/pnas.79.14.4317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Petersen N. O. Diffusion and aggregation in biological membranes. Can J Biochem Cell Biol. 1984 Nov;62(11):1158–1166. doi: 10.1139/o84-149. [DOI] [PubMed] [Google Scholar]
- Pumplin D. W., Bloch R. J. Disruption and reformation of the acetylcholine receptor clusters of cultured rat myotubes occur in two distinct stages. J Cell Biol. 1987 Jan;104(1):97–108. doi: 10.1083/jcb.104.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pumplin D. W., Bloch R. J. Lipid domains of acetylcholine receptor clusters detected with saponin and filipin. J Cell Biol. 1983 Oct;97(4):1043–1054. doi: 10.1083/jcb.97.4.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Richter C., Winterhalter K. H., Cherry R. J. Rotational diffusion of cytochrome P-450 in rat liver microsomes. FEBS Lett. 1979 Jun 1;102(1):151–154. doi: 10.1016/0014-5793(79)80948-5. [DOI] [PubMed] [Google Scholar]
- Ross A., Rapuano M., Prives J. Induction of phosphorylation and cell surface redistribution of acetylcholine receptors by phorbol ester and carbamylcholine in cultured chick muscle cells. J Cell Biol. 1988 Sep;107(3):1139–1145. doi: 10.1083/jcb.107.3.1139. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rousselet A., Cartaud J., Devaux P. F., Changeux J. P. The rotational diffusion of the acetylcholine receptor in Torpeda marmorata membrane fragments studied with a spin-labelled alpha-toxin: importance of the 43 000 protein(s). EMBO J. 1982;1(4):439–445. doi: 10.1002/j.1460-2075.1982.tb01188.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saffman P. G., Delbrück M. Brownian motion in biological membranes. Proc Natl Acad Sci U S A. 1975 Aug;72(8):3111–3113. doi: 10.1073/pnas.72.8.3111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schuetze S. M., Role L. W. Developmental regulation of nicotinic acetylcholine receptors. Annu Rev Neurosci. 1987;10:403–457. doi: 10.1146/annurev.ne.10.030187.002155. [DOI] [PubMed] [Google Scholar]
- Sealock R., Paschal B., Beckerle M., Burridge K. Talin is a post-synaptic component of the rat neuromuscular junction. Exp Cell Res. 1986 Mar;163(1):143–150. doi: 10.1016/0014-4827(86)90566-5. [DOI] [PubMed] [Google Scholar]
- Stollberg J., Fraser S. E. Acetylcholine receptors and concanavalin A-binding sites on cultured Xenopus muscle cells: electrophoresis, diffusion, and aggregation. J Cell Biol. 1988 Oct;107(4):1397–1408. doi: 10.1083/jcb.107.4.1397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stya M., Axelrod D. Diffusely distributed acetylcholine receptors can participate in cluster formation on cultured rat myotubes. Proc Natl Acad Sci U S A. 1983 Jan;80(2):449–453. doi: 10.1073/pnas.80.2.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Velez M., Axelrod D. Polarized fluorescence photobleaching recovery for measuring rotational diffusion in solutions and membranes. Biophys J. 1988 Apr;53(4):575–591. doi: 10.1016/S0006-3495(88)83137-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshida T. M., Barisas B. G. Protein rotational motion in solution measured by polarized fluorescence depletion. Biophys J. 1986 Jul;50(1):41–53. doi: 10.1016/S0006-3495(86)83437-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zabrecky J. R., Raftery M. A. The role of lipids in the function of the acetylcholine receptor. J Recept Res. 1985;5(5-6):397–417. doi: 10.3109/10799898509041890. [DOI] [PubMed] [Google Scholar]
- Zidovetzki R., Yarden Y., Schlessinger J., Jovin T. M. Rotational diffusion of epidermal growth factor complexed to cell surface receptors reflects rapid microaggregation and endocytosis of occupied receptors. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6981–6985. doi: 10.1073/pnas.78.11.6981. [DOI] [PMC free article] [PubMed] [Google Scholar]
