Abstract
The adhesion and motility of tumor cells on basement membranes is a central consideration in tumor cell invasion and metastasis. Basement membrane type IV collagen directly promotes the adhesion and migration of various tumor cell types in vitro. Our previous studies demonstrated that tumor cells adhered and spread on surfaces coated with intact type IV collagen or either of the two major enzymatically purified domains of this protein. Only one of these major domains, the pepsin-generated major triple helical fragment, also supported tumor cell motility in vitro, implicating the involvement of the major triple helical region in type IV collagen-mediated tumor cell invasion in vivo. The present studies extend our previous observations using a synthetic peptide approach. A peptide, designated IV-H1, was derived from a continuous collagenous region of the major triple helical domain of the human alpha 1(IV) chain. This peptide, which has the sequence GVKGDKGNPGWPGAP, directly supported the adhesion, spreading, and motility of the highly metastatic K1735 M4 murine melanoma cell line, as well as the adhesion and spreading of other cell types, in a concentration-dependent manner in vitro. Furthermore, excess soluble peptide IV-H1, or polyclonal antibodies directed against peptide IV-H1, inhibited type IV collagen-mediated melanoma cell adhesion, spreading, and motility, but had no effect on these cellular responses to type I collagen. The full complement of cell adhesion, spreading, and motility promoting activities was dependent upon the preservation of the three prolyl residues in the peptide IV-H1 sequence. These studies indicate that peptide IV-H1 represents a cell-specific adhesion, spreading, and motility promoting domain that is active within the type IV collagen molecule.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aumailley M., Timpl R. Attachment of cells to basement membrane collagen type IV. J Cell Biol. 1986 Oct;103(4):1569–1575. doi: 10.1083/jcb.103.4.1569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bauminger S., Wilchek M. The use of carbodiimides in the preparation of immunizing conjugates. Methods Enzymol. 1980;70(A):151–159. doi: 10.1016/s0076-6879(80)70046-0. [DOI] [PubMed] [Google Scholar]
- Chelberg M. K., Tsilibary E. C., Hauser A. R., McCarthy J. B. Type IV collagen-mediated melanoma cell adhesion and migration: involvement of multiple, distinct domains of the collagen molecule. Cancer Res. 1989 Sep 1;49(17):4796–4802. [PubMed] [Google Scholar]
- Dedhar S., Ruoslahti E., Pierschbacher M. D. A cell surface receptor complex for collagen type I recognizes the Arg-Gly-Asp sequence. J Cell Biol. 1987 Mar;104(3):585–593. doi: 10.1083/jcb.104.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fidler I. J., Gruys E., Cifone M. A., Barnes Z., Bucana C. Demonstration of multiple phenotypic diversity in a murine melanoma of recent origin. J Natl Cancer Inst. 1981 Oct;67(4):947–956. [PubMed] [Google Scholar]
- Herbst T. J., McCarthy J. B., Tsilibary E. C., Furcht L. T. Differential effects of laminin, intact type IV collagen, and specific domains of type IV collagen on endothelial cell adhesion and migration. J Cell Biol. 1988 Apr;106(4):1365–1373. doi: 10.1083/jcb.106.4.1365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kleinman H. K., McGarvey M. L., Liotta L. A., Robey P. G., Tryggvason K., Martin G. R. Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry. 1982 Nov 23;21(24):6188–6193. doi: 10.1021/bi00267a025. [DOI] [PubMed] [Google Scholar]
- Koliakos G. G., Kouzi-Koliakos K., Furcht L. T., Reger L. A., Tsilibary E. C. The binding of heparin to type IV collagen: domain specificity with identification of peptide sequences from the alpha 1(IV) and alpha 2(IV) which preferentially bind heparin. J Biol Chem. 1989 Feb 5;264(4):2313–2323. [PubMed] [Google Scholar]
- Kramer R. H., Marks N. Identification of integrin collagen receptors on human melanoma cells. J Biol Chem. 1989 Mar 15;264(8):4684–4688. [PubMed] [Google Scholar]
- Kurkinen M., Taylor A., Garrels J. I., Hogan B. L. Cell surface-associated proteins which bind native type IV collagen or gelatin. J Biol Chem. 1984 May 10;259(9):5915–5922. [PubMed] [Google Scholar]
- Liotta L. A., Kleinerman J., Catanzaro P., Rynbrandt D. Degradation of basement membrane by murine tumor cells. J Natl Cancer Inst. 1977 May;58(5):1427–1431. doi: 10.1093/jnci/58.5.1427. [DOI] [PubMed] [Google Scholar]
- McCarthy J. B., Chelberg M. K., Mickelson D. J., Furcht L. T. Localization and chemical synthesis of fibronectin peptides with melanoma adhesion and heparin binding activities. Biochemistry. 1988 Feb 23;27(4):1380–1388. doi: 10.1021/bi00404a044. [DOI] [PubMed] [Google Scholar]
- McCarthy J. B., Hagen S. T., Furcht L. T. Human fibronectin contains distinct adhesion- and motility-promoting domains for metastatic melanoma cells. J Cell Biol. 1986 Jan;102(1):179–188. doi: 10.1083/jcb.102.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCarthy J. B., Skubitz A. P., Qi Z., Yi X. Y., Mickelson D. J., Klein D. J., Furcht L. T. RGD-independent cell adhesion to the carboxy-terminal heparin-binding fragment of fibronectin involves heparin-dependent and -independent activities. J Cell Biol. 1990 Mar;110(3):777–787. doi: 10.1083/jcb.110.3.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McConahey P. J., Dixon F. J. Radioiodination of proteins by the use of the chloramine-T method. Methods Enzymol. 1980;70(A):210–213. doi: 10.1016/s0076-6879(80)70050-2. [DOI] [PubMed] [Google Scholar]
- Muthukumaran G., Blumberg B., Kurkinen M. The complete primary structure for the alpha 1-chain of mouse collagen IV. Differential evolution of collagen IV domains. J Biol Chem. 1989 Apr 15;264(11):6310–6317. [PubMed] [Google Scholar]
- Rubin K., Hök M., Obrink B., Timpl R. Substrate adhesion of rat hepatocytes: mechanism of attachment to collagen substrates. Cell. 1981 May;24(2):463–470. doi: 10.1016/0092-8674(81)90337-8. [DOI] [PubMed] [Google Scholar]
- Schubert D., Heinemann S., Carlisle W., Tarikas H., Kimes B., Patrick J., Steinbach J. H., Culp W., Brandt B. L. Clonal cell lines from the rat central nervous system. Nature. 1974 May 17;249(454):224–227. doi: 10.1038/249224a0. [DOI] [PubMed] [Google Scholar]
- Skubitz A. P., Charonis A. S., Tsilibary E. C., Furcht L. T. Localization of a tumor cell adhesion domain of laminin by a monoclonal antibody. Exp Cell Res. 1987 Dec;173(2):349–369. doi: 10.1016/0014-4827(87)90276-x. [DOI] [PubMed] [Google Scholar]
- Sugrue S. P. Isolation of collagen binding proteins from embryonic chicken corneal epithelial cells. J Biol Chem. 1987 Mar 5;262(7):3338–3343. [PubMed] [Google Scholar]
- Tomaselli K. J., Damsky C. H., Reichardt L. F. Purification and characterization of mammalian integrins expressed by a rat neuronal cell line (PC12): evidence that they function as alpha/beta heterodimeric receptors for laminin and type IV collagen. J Cell Biol. 1988 Sep;107(3):1241–1252. doi: 10.1083/jcb.107.3.1241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WADDELL W. J. A simple ultraviolet spectrophotometric method for the determination of protein. J Lab Clin Med. 1956 Aug;48(2):311–314. [PubMed] [Google Scholar]