Abstract
We have compared the nucleosomal organization of c-Ha-rasVal 12 oncogene-transformed NIH-3T3 fibroblasts with that of normal fibroblasts by using micrococcal nuclease (MNase) as a probe for the chromatin structure. The bulk chromatin from asynchronously and exponentially growing ras-transformed cells was much more sensitive to MNase digestion than chromatin from the normal cells. Southern hybridization analyses of the MNase digests with probes specific for the ornithine decarboxylase (odc) and c-myc genes showed that the coding and/or 3' end regions of these growth-inducible genes carry a nucleosomal organization both in ras-transformed and normal cells. Studies with cells synchronized by serum starvation showed that in both cell lines the nucleosomal organization of chromatin is relatively condensed at the quiescent state, becomes highly decondensed during the late G1 phase of the cell cycle, and starts again to condense during the S phase. However, in ras-transformed cells the decondensation state stayed much longer than in normal cells. Moreover, irrespective of the phase of the cell cycle the bulk chromatin as well as that of the odc and c-myc genes was more sensitive to MNase digestion in the ras- transformed cell than in the normal fibroblast. Decondensation of the chromatin was also observed in the normal c-Ha-ras protooncogene- transfected cells, but to a lesser extent than in the mutant ras- transformed cells. Whether the increased degree of chromatin decondensation plays a regulatory role in the increased expression of many growth-related genes in the ras-transformed cells remains an interesting object of further study.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allan J., Staynov D. Z., Gould H. Reversible dissociation of linker histone from chromatin with preservation of internucleosomal repeat. Proc Natl Acad Sci U S A. 1980 Feb;77(2):885–889. doi: 10.1073/pnas.77.2.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bergman M. G., Wawra E., Winge M. Chicken histone H5 inhibits transcription and replication when introduced into proliferating cells by microinjection. J Cell Sci. 1988 Oct;91(Pt 2):201–209. doi: 10.1242/jcs.91.2.201. [DOI] [PubMed] [Google Scholar]
- Biard-Roche J., Gorka C., Lawrence J. J. The structural role of histone H1: properties of reconstituted chromatin with various H1 subfractions (H1-1, H1-2, and H1o). EMBO J. 1982;1(12):1487–1492. doi: 10.1002/j.1460-2075.1982.tb01344.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caplan A., Ord M. G., Stocken L. A. Chromatin structure through the cell cycle. Studies with regeneration rat liver. Biochem J. 1978 Aug 15;174(2):475–483. doi: 10.1042/bj1740475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen S. G., Sahai-Srivastava B. I. Differences in cleavage of untreated and adriamycin-treated chromatin from normal and leukemic human cells by site non-specific endoribonucleases. Eur J Cancer Clin Oncol. 1986 Dec;22(12):1533–1537. doi: 10.1016/0277-5379(86)90092-1. [DOI] [PubMed] [Google Scholar]
- Chen T. A., Allfrey V. G. Rapid and reversible changes in nucleosome structure accompany the activation, repression, and superinduction of murine fibroblast protooncogenes c-fos and c-myc. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5252–5256. doi: 10.1073/pnas.84.15.5252. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chou R. H., Chen T. A., Churchill J. R., Thompson S. W., Chou K. L. Reassembly of c-myc and relaxation of c-fos nucleosomes during differentiation of human leukemic (HL-60) cells. Biochem Biophys Res Commun. 1986 Nov 26;141(1):213–221. doi: 10.1016/s0006-291x(86)80356-4. [DOI] [PubMed] [Google Scholar]
- Cole R. D., Lawson G. M., Hsiang M. W. H1 histone and the condensation of chromatin and DNA. Cold Spring Harb Symp Quant Biol. 1978;42(Pt 1):253–263. doi: 10.1101/sqb.1978.042.01.027. [DOI] [PubMed] [Google Scholar]
- Compton J. L., Bellard M., Chambon P. Biochemical evidence of variability in the DNA repeat length in the chromatin of higher eukaryotes. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4382–4386. doi: 10.1073/pnas.73.12.4382. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eissenberg J. C., Cartwright I. L., Thomas G. H., Elgin S. C. Selected topics in chromatin structure. Annu Rev Genet. 1985;19:485–536. doi: 10.1146/annurev.ge.19.120185.002413. [DOI] [PubMed] [Google Scholar]
- Felsenfeld G., McGhee J. D. Structure of the 30 nm chromatin fiber. Cell. 1986 Feb 14;44(3):375–377. doi: 10.1016/0092-8674(86)90456-3. [DOI] [PubMed] [Google Scholar]
- Finch J. T., Noll M., Kornberg R. D. Electron microscopy of defined lengths of chromatin. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3320–3322. doi: 10.1073/pnas.72.9.3320. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fort P., Marty L., Piechaczyk M., el Sabrouty S., Dani C., Jeanteur P., Blanchard J. M. Various rat adult tissues express only one major mRNA species from the glyceraldehyde-3-phosphate-dehydrogenase multigenic family. Nucleic Acids Res. 1985 Mar 11;13(5):1431–1442. doi: 10.1093/nar/13.5.1431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hartwig M. The size of independently supercoiled domains in nuclear DNA from normal human lymphocytes and leukemic lymphoblasts. Biochim Biophys Acta. 1982 Aug 30;698(2):214–217. doi: 10.1016/0167-4781(82)90138-5. [DOI] [PubMed] [Google Scholar]
- Heby O. Role of polyamines in the control of cell proliferation and differentiation. Differentiation. 1981;19(1):1–20. doi: 10.1111/j.1432-0436.1981.tb01123.x. [DOI] [PubMed] [Google Scholar]
- Hickok N. J., Seppänen P. J., Kontula K. K., Jänne P. A., Bardin C. W., Jänne O. A. Two ornithine decarboxylase mRNA species in mouse kidney arise from size heterogeneity at their 3' termini. Proc Natl Acad Sci U S A. 1986 Feb;83(3):594–598. doi: 10.1073/pnas.83.3.594. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hildebrand C. E., Tobey R. A. Cell-cycle-specific changes in chromatin organization. Biochem Biophys Res Commun. 1975 Mar 3;63(1):134–139. doi: 10.1016/s0006-291x(75)80021-0. [DOI] [PubMed] [Google Scholar]
- Hölttä E., Sistonen L., Alitalo K. The mechanisms of ornithine decarboxylase deregulation in c-Ha-ras oncogene-transformed NIH 3T3 cells. J Biol Chem. 1988 Mar 25;263(9):4500–4507. [PubMed] [Google Scholar]
- Igo-Kemenes T., Hörz W., Zachau H. G. Chromatin. Annu Rev Biochem. 1982;51:89–121. doi: 10.1146/annurev.bi.51.070182.000513. [DOI] [PubMed] [Google Scholar]
- Katz A., Kahana C. Transcriptional activation of mammalian ornithine decarboxylase during stimulated growth. Mol Cell Biol. 1987 Jul;7(7):2641–2643. doi: 10.1128/mcb.7.7.2641. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Land H., Parada L. F., Weinberg R. A. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature. 1983 Aug 18;304(5927):596–602. doi: 10.1038/304596a0. [DOI] [PubMed] [Google Scholar]
- Lepault J., Bram S., Escaig J., Wray W. Chromatin freeze fracture electron microscopy: a comparative study of core particles, chromatin, metaphase chromosomes, and nuclei. Nucleic Acids Res. 1980 Jan 25;8(2):265–278. doi: 10.1093/nar/8.2.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Linskens M. H., Eijsermans A., Dijkwel P. A. Comparative analysis of DNA loop length in nontransformed and transformed hamster cells. Mutat Res. 1987 Jun;178(2):245–256. doi: 10.1016/0027-5107(87)90275-2. [DOI] [PubMed] [Google Scholar]
- Pavlovic J., Banz E., Parish R. W. The effects of transcription on the nucleosome structure of four Dictyostelium genes. Nucleic Acids Res. 1989 Mar 25;17(6):2315–2332. doi: 10.1093/nar/17.6.2315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pederson T. Chromatin structure and the cell cycle. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2224–2228. doi: 10.1073/pnas.69.8.2224. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prentice D. A., Gurley L. R. Nuclease digestibility of chromatin is affected by nuclei isolation procedures. Biochim Biophys Acta. 1983 Jun 24;740(2):134–144. doi: 10.1016/0167-4781(83)90070-2. [DOI] [PubMed] [Google Scholar]
- Prentice D. A., Tobey R. A., Gurley L. R. Cell cycle variations in chromatin structure detected by DNase I. Exp Cell Res. 1985 Mar;157(1):242–252. doi: 10.1016/0014-4827(85)90166-1. [DOI] [PubMed] [Google Scholar]
- Rill R. L., Shaw B. R., Van Holde K. E. Isolation and characterization of chromatin subunits. Methods Cell Biol. 1978;18:69–103. doi: 10.1016/s0091-679x(08)60134-x. [DOI] [PubMed] [Google Scholar]
- Ristiniemi J., Oikarinen J. Histone H1 binds to the putative nuclear factor I recognition sequence in the mouse alpha 2(I) collagen promoter. J Biol Chem. 1989 Feb 5;264(4):2164–2174. [PubMed] [Google Scholar]
- Roche J., Gorka C., Goeltz P., Lawrence J. J. Association of histone H1(0) with a gene repressed during liver development. Nature. 1985 Mar 14;314(6007):197–198. doi: 10.1038/314197a0. [DOI] [PubMed] [Google Scholar]
- Shah R. I., Lea M. A. Chromatin solubilization in rapidly growing hepatomas. Exp Mol Pathol. 1987 Dec;47(3):403–410. doi: 10.1016/0014-4800(87)90022-0. [DOI] [PubMed] [Google Scholar]
- Sistonen L., Hölttä E., Mäkelä T. P., Keski-Oja J., Alitalo K. The cellular response to induction of the p21 c-Ha-ras oncoprotein includes stimulation of jun gene expression. EMBO J. 1989 Mar;8(3):815–822. doi: 10.1002/j.1460-2075.1989.tb03442.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sistonen L., Keski-Oja J., Ulmanen I., Hölttä E., Wikgren B. J., Alitalo K. Dose effects of transfected c-Ha-rasVal 12 oncogene in transformed cell clones. Exp Cell Res. 1987 Feb;168(2):518–530. doi: 10.1016/0014-4827(87)90024-3. [DOI] [PubMed] [Google Scholar]
- Vanderbilt J. N., Bloom K. S., Anderson J. N. Endogenous nuclease. Properties and effects on transcribed genes in chromatin. J Biol Chem. 1982 Nov 10;257(21):13009–13017. [PubMed] [Google Scholar]
- Wasylyk C., Imler J. L., Wasylyk B. Transforming but not immortalizing oncogenes activate the transcription factor PEA1. EMBO J. 1988 Aug;7(8):2475–2483. doi: 10.1002/j.1460-2075.1988.tb03094.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weintraub H. Histone-H1-dependent chromatin superstructures and the suppression of gene activity. Cell. 1984 Aug;38(1):17–27. doi: 10.1016/0092-8674(84)90522-1. [DOI] [PubMed] [Google Scholar]
- Widom J., Klug A. Structure of the 300A chromatin filament: X-ray diffraction from oriented samples. Cell. 1985 Nov;43(1):207–213. doi: 10.1016/0092-8674(85)90025-x. [DOI] [PubMed] [Google Scholar]
- Wu C., Wong Y. C., Elgin S. C. The chromatin structure of specific genes: II. Disruption of chromatin structure during gene activity. Cell. 1979 Apr;16(4):807–814. doi: 10.1016/0092-8674(79)90096-5. [DOI] [PubMed] [Google Scholar]
