Abstract
A protein located on the surface of guinea pig sperm (PH-30) has been implicated in the process of sperm-egg fusion (Primakoff, P., H. Hyatt, and J. Tredick-Kline. 1987. J. Cell Biol. 104:141-149). In this paper we have assessed basic biochemical properties of PH-30 and have analyzed the molecular forms of PH-30 present at different stages of sperm maturation. We show the following: (a) PH-30 is an integral membrane glycoprotein; (b) it is composed of two tightly associated and immunologically distinct subunits; (c) both subunits are made as larger precursors; (d) processing of the two subunits occurs at different developmental stages; (e) the final processing step occurs in the region of the epididymis where sperm become fertilization competent; (f) processing can be mimicked in vitro; (g) processing exposes at least two new epitopes on PH-30-one of the newly exposed epitopes is recognized by a fusion-inhibitory monoclonal antibody. These results are discussed in terms of the possible role of PH-30 in mediating fusion with the egg plasma membrane.
Full Text
The Full Text of this article is available as a PDF (2.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ansorge W. Fast and sensitive detection of protein and DNA bands by treatment with potassium permanganate. J Biochem Biophys Methods. 1985 May;11(1):13–20. doi: 10.1016/0165-022x(85)90037-5. [DOI] [PubMed] [Google Scholar]
- Bourne H. R. Do GTPases direct membrane traffic in secretion? Cell. 1988 Jun 3;53(5):669–671. doi: 10.1016/0092-8674(88)90081-5. [DOI] [PubMed] [Google Scholar]
- Dyson A. L., Orgebin-Crist M. C. Effect of hypophysectomy, castration and androgen replacement upon the fertilizing ability of rat epididymal spermatozoa. Endocrinology. 1973 Aug;93(2):391–402. doi: 10.1210/endo-93-2-391. [DOI] [PubMed] [Google Scholar]
- Eddy E. M., Vernon R. B., Muller C. H., Hahnel A. C., Fenderson B. A. Immunodissection of sperm surface modifications during epididymal maturation. Am J Anat. 1985 Nov;174(3):225–237. doi: 10.1002/aja.1001740305. [DOI] [PubMed] [Google Scholar]
- Friend D. S., Fawcett D. W. Membrane differentiations in freeze-fractured mammalian sperm. J Cell Biol. 1974 Nov;63(2 Pt 1):641–664. doi: 10.1083/jcb.63.2.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fujiki Y., Hubbard A. L., Fowler S., Lazarow P. B. Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum. J Cell Biol. 1982 Apr;93(1):97–102. doi: 10.1083/jcb.93.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gluck S., Caldwell J. Immunoaffinity purification and characterization of vacuolar H+ATPase from bovine kidney. J Biol Chem. 1987 Nov 15;262(32):15780–15789. [PubMed] [Google Scholar]
- Green D. P. The induction of the acrosome reaction in guinea-pig sperm by the divalent metal cation ionophore A23187. J Cell Sci. 1978 Aug;32:137–151. doi: 10.1242/jcs.32.1.137. [DOI] [PubMed] [Google Scholar]
- Hoffer A. P., Greenberg J. The structure of the epididymis, efferent ductules and ductus deferens of the guinea pig: a light microscope study. Anat Rec. 1978 Mar;190(3):659–677. doi: 10.1002/ar.1091900304. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Phelps B. M., Myles D. G. The guinea pig sperm plasma membrane protein, PH-20, reaches the surface via two transport pathways and becomes localized to a domain after an initial uniform distribution. Dev Biol. 1987 Sep;123(1):63–72. doi: 10.1016/0012-1606(87)90428-3. [DOI] [PubMed] [Google Scholar]
- Primakoff P., Hyatt H., Tredick-Kline J. Identification and purification of a sperm surface protein with a potential role in sperm-egg membrane fusion. J Cell Biol. 1987 Jan;104(1):141–149. doi: 10.1083/jcb.104.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stegmann T., Doms R. W., Helenius A. Protein-mediated membrane fusion. Annu Rev Biophys Biophys Chem. 1989;18:187–211. doi: 10.1146/annurev.bb.18.060189.001155. [DOI] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weidman P. J., Melançon P., Block M. R., Rothman J. E. Binding of an N-ethylmaleimide-sensitive fusion protein to Golgi membranes requires both a soluble protein(s) and an integral membrane receptor. J Cell Biol. 1989 May;108(5):1589–1596. doi: 10.1083/jcb.108.5.1589. [DOI] [PMC free article] [PubMed] [Google Scholar]
- White J. M., Blobel C. P. Cell-to-cell fusion. Curr Opin Cell Biol. 1989 Oct;1(5):934–939. doi: 10.1016/0955-0674(89)90061-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- White J. M. Viral and cellular membrane fusion proteins. Annu Rev Physiol. 1990;52:675–697. doi: 10.1146/annurev.ph.52.030190.003331. [DOI] [PubMed] [Google Scholar]
- Wilschut J. Intracellular membrane fusion. Curr Opin Cell Biol. 1989 Aug;1(4):639–647. doi: 10.1016/0955-0674(89)90028-8. [DOI] [PubMed] [Google Scholar]
- Wilson D. W., Wilcox C. A., Flynn G. C., Chen E., Kuang W. J., Henzel W. J., Block M. R., Ullrich A., Rothman J. E. A fusion protein required for vesicle-mediated transport in both mammalian cells and yeast. Nature. 1989 Jun 1;339(6223):355–359. doi: 10.1038/339355a0. [DOI] [PubMed] [Google Scholar]