Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1990 Jul 1;111(1):55–68. doi: 10.1083/jcb.111.1.55

The relationship between antigen concentration, antigen internalization, and antigenic complexes: modeling insights into antigen processing and presentation

PMCID: PMC2116156  PMID: 2365735

Abstract

Native antigen is processed and subsequently presented on the surface of antigen-presenting cells, an important step in the elicitation of an immune response. The early events of antigen processing and presentation include: ingestion of a native antigen, intracellular degradation to expose an antigenic peptide fragment, binding of this fragment with an MHC class II molecule, and display of this newly formed complex on the cell surface. Through the development of a mathematical model, a set of mathematical equations which describes the time-dependent appearance, disappearance, and movement of individual molecules, quantitative insight can be gained into the pathways and rate-limiting steps of antigen presentation. The credibility of the model has been verified by comparison to literature data. For example, it has been shown experimentally that macrophages require 60 min for effective antigen presentation, whereas B cells require 6-8 h. The mathematical model predicts these presentation times and identifies the difference in the cell's respective pinocytic rates and sizes as important parameters. B cells capture antigen in their environment through nonspecific fluid-phase pinocytosis as well as by binding antigen to their surface immunoglobulin, allowing receptor-mediated uptake. Uptake of antigen via receptor-mediated endocytosis has been reported to require 1,000-fold less antigen than uptake via nonspecific pinocytosis. The mathematical model clearly predicts this decrease in concentration. The model also makes quantitative predictions for the number of MHC class II-antigen complexes needed to produce T cell stimulation.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen P. M., Babbitt B. P., Unanue E. R. T-cell recognition of lysozyme: the biochemical basis of presentation. Immunol Rev. 1987 Aug;98:171–187. doi: 10.1111/j.1600-065x.1987.tb00524.x. [DOI] [PubMed] [Google Scholar]
  2. Allen P. M., Beller D. I., Braun J., Unanue E. R. The handling of Listeria monocytogenes by macrophages: the search for an immunogenic molecule in antigen presentation. J Immunol. 1984 Jan;132(1):323–331. [PubMed] [Google Scholar]
  3. Anderson R. G., Orci L. A view of acidic intracellular compartments. J Cell Biol. 1988 Mar;106(3):539–543. doi: 10.1083/jcb.106.3.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Babbitt B. P., Allen P. M., Matsueda G., Haber E., Unanue E. R. Binding of immunogenic peptides to Ia histocompatibility molecules. 1985 Sep 26-Oct 2Nature. 317(6035):359–361. doi: 10.1038/317359a0. [DOI] [PubMed] [Google Scholar]
  5. Buus S., Sette A., Colon S. M., Grey H. M. Autologous peptides constitutively occupy the antigen binding site on Ia. Science. 1988 Nov 18;242(4881):1045–1047. doi: 10.1126/science.3194755. [DOI] [PubMed] [Google Scholar]
  6. Buus S., Sette A., Grey H. M. The interaction between protein-derived immunogenic peptides and Ia. Immunol Rev. 1987 Aug;98:115–141. doi: 10.1111/j.1600-065x.1987.tb00522.x. [DOI] [PubMed] [Google Scholar]
  7. Buus S., Werdelin O. Oligopeptide antigens of the angiotensin lineage compete for presentation by paraformaldehyde-treated accessory cells to T cells. J Immunol. 1986 Jan;136(2):459–465. [PubMed] [Google Scholar]
  8. Casten L. A., Pierce S. K. Receptor-mediated B cell antigen processing. Increased antigenicity of a globular protein covalently coupled to antibodies specific for B cell surface structures. J Immunol. 1988 Jan 15;140(2):404–410. [PubMed] [Google Scholar]
  9. Chesnut R. W., Colon S. M., Grey H. M. Antigen presentation by normal B cells, B cell tumors, and macrophages: functional and biochemical comparison. J Immunol. 1982 Apr;128(4):1764–1768. [PubMed] [Google Scholar]
  10. Chesnut R. W., Grey H. M. Antigen presenting cells and mechanisms of antigen presentation. Crit Rev Immunol. 1985;5(3):263–316. [PubMed] [Google Scholar]
  11. Cresswell P. Intracellular class II HLA antigens are accessible to transferrin-neuraminidase conjugates internalized by receptor-mediated endocytosis. Proc Natl Acad Sci U S A. 1985 Dec;82(23):8188–8192. doi: 10.1073/pnas.82.23.8188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cuchens M. A., Buttke T. M. A kinetic study of membrane immunoglobulin capping by flow cytometry. Cytometry. 1984 Nov;5(6):601–609. doi: 10.1002/cyto.990050608. [DOI] [PubMed] [Google Scholar]
  13. DeLisi C. The biophysics of ligand-receptor interactions. Q Rev Biophys. 1980 May;13(2):201–230. doi: 10.1017/s0033583500001657. [DOI] [PubMed] [Google Scholar]
  14. Dembić Z., Haas W., Weiss S., McCubrey J., Kiefer H., von Boehmer H., Steinmetz M. Transfer of specificity by murine alpha and beta T-cell receptor genes. Nature. 1986 Mar 20;320(6059):232–238. doi: 10.1038/320232a0. [DOI] [PubMed] [Google Scholar]
  15. Diment S., Stahl P. Macrophage endosomes contain proteases which degrade endocytosed protein ligands. J Biol Chem. 1985 Dec 5;260(28):15311–15317. [PubMed] [Google Scholar]
  16. Donermeyer D. L., Allen P. M. Binding to Ia protects an immunogenic peptide from proteolytic degradation. J Immunol. 1989 Feb 15;142(4):1063–1068. [PubMed] [Google Scholar]
  17. Drake J. R., Repasky E. A., Bankert R. B. Endocytosis of antigen, anti-idiotype, and anti-immunoglobulin antibodies and receptor re-expression by murine B cells. J Immunol. 1989 Sep 15;143(6):1768–1776. [PubMed] [Google Scholar]
  18. Eisenlohr L. C., Gerhard W., Hackett C. J. Individual class II-restricted antigenic determinants of the same protein exhibit distinct kinetics of appearance and persistence on antigen-presenting cells. J Immunol. 1988 Oct 15;141(8):2581–2584. [PubMed] [Google Scholar]
  19. Ferguson J. B., Andrews J. R., Voynick I. M., Fruton J. S. The specificity of cathepsin D. J Biol Chem. 1973 Oct 10;248(19):6701–6708. [PubMed] [Google Scholar]
  20. Fox B. S., Quill H., Carlson L., Schwartz R. H. Quantitative analysis of the T cell response to antigen and planar membranes containing purified Ia molecules. J Immunol. 1987 May 15;138(10):3367–3374. [PubMed] [Google Scholar]
  21. Germain R. N. Immunology. The ins and outs of antigen processing and presentation. Nature. 1986 Aug 21;322(6081):687–689. doi: 10.1038/322687a0. [DOI] [PubMed] [Google Scholar]
  22. Gosselin E. J., Tony H. P., Parker D. C. Characterization of antigen processing and presentation by resting B lymphocytes. J Immunol. 1988 Mar 1;140(5):1408–1413. [PubMed] [Google Scholar]
  23. Grey H. M., Colon S. M., Chesnut R. W. Requirements for the processing of antigen by antigen-presenting B cells. II. Biochemical comparison of the fate of antigen in B cell tumors and macrophages. J Immunol. 1982 Dec;129(6):2389–2395. [PubMed] [Google Scholar]
  24. Guillet J. G., Lai M. Z., Briner T. J., Buus S., Sette A., Grey H. M., Smith J. A., Gefter M. L. Immunological self, nonself discrimination. Science. 1987 Feb 20;235(4791):865–870. doi: 10.1126/science.2433769. [DOI] [PubMed] [Google Scholar]
  25. Harding C. V., Unanue E. R. Antigen processing and intracellular Ia. Possible roles of endocytosis and protein synthesis in Ia function. J Immunol. 1989 Jan 1;142(1):12–19. [PubMed] [Google Scholar]
  26. Jensen P. E. Protein synthesis in antigen processing. J Immunol. 1988 Oct 15;141(8):2545–2550. [PubMed] [Google Scholar]
  27. Krieger J., Jenis D. M., Chesnut R. W., Grey H. M. Studies on the capacity of intact cells and purified Ia from different B cell sources to function in antigen presentation to T cells. J Immunol. 1988 Jan 15;140(2):388–394. [PubMed] [Google Scholar]
  28. Kupfer A., Singer S. J. The specific interaction of helper T cells and antigen-presenting B cells. IV. Membrane and cytoskeletal reorganizations in the bound T cell as a function of antigen dose. J Exp Med. 1989 Nov 1;170(5):1697–1713. doi: 10.1084/jem.170.5.1697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lakey E. K., Casten L. A., Niebling W. L., Margoliash E., Pierce S. K. Time dependence of B cell processing and presentation of peptide and native protein antigens. J Immunol. 1988 May 15;140(10):3309–3314. [PubMed] [Google Scholar]
  30. Lanzavecchia A. Antigen presentation by B lymphocytes: a critical step in T-B collaboration. Curr Top Microbiol Immunol. 1986;130:65–78. doi: 10.1007/978-3-642-71440-5_6. [DOI] [PubMed] [Google Scholar]
  31. Lanzavecchia A. Antigen-specific interaction between T and B cells. Nature. 1985 Apr 11;314(6011):537–539. doi: 10.1038/314537a0. [DOI] [PubMed] [Google Scholar]
  32. Lauffenburger D. A., Linderman J., Berkowitz L. Analysis of mammalian cell growth factor receptor dynamics. Ann N Y Acad Sci. 1987;506:147–162. doi: 10.1111/j.1749-6632.1987.tb23816.x. [DOI] [PubMed] [Google Scholar]
  33. Linderman J. J., Lauffenburger D. A. Analysis of intracellular receptor/ligand sorting in endosomes. J Theor Biol. 1988 May 21;132(2):203–245. doi: 10.1016/s0022-5193(88)80157-7. [DOI] [PubMed] [Google Scholar]
  34. Long E. O. Intracellular traffic and antigen processing. Immunol Today. 1989 Jul;10(7):232–234. doi: 10.1016/0167-5699(89)90259-4. [DOI] [PubMed] [Google Scholar]
  35. Lorenz R. G., Allen P. M. Direct evidence for functional self-protein/Ia-molecule complexes in vivo. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5220–5223. doi: 10.1073/pnas.85.14.5220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Luescher I. F., Allen P. M., Unanue E. R. Binding of photoreactive lysozyme peptides to murine histocompatibility class II molecules. Proc Natl Acad Sci U S A. 1988 Feb;85(3):871–874. doi: 10.1073/pnas.85.3.871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Marsh M., Griffiths G., Dean G. E., Mellman I., Helenius A. Three-dimensional structure of endosomes in BHK-21 cells. Proc Natl Acad Sci U S A. 1986 May;83(9):2899–2903. doi: 10.1073/pnas.83.9.2899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. McCoy K. L., Miller J., Jenkins M., Ronchese F., Germain R. N., Schwartz R. H. Diminished antigen processing by endosomal acidification mutant antigen-presenting cells. J Immunol. 1989 Jul 1;143(1):29–38. [PubMed] [Google Scholar]
  39. Mellman I. S., Unkeless J. C. Purificaton of a functional mouse Fc receptor through the use of a monoclonal antibody. J Exp Med. 1980 Oct 1;152(4):1048–1069. doi: 10.1084/jem.152.4.1048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Mellman I., Plutner H., Ukkonen P. Internalization and rapid recycling of macrophage Fc receptors tagged with monovalent antireceptor antibody: possible role of a prelysosomal compartment. J Cell Biol. 1984 Apr;98(4):1163–1169. doi: 10.1083/jcb.98.4.1163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Nowell J., Quaranta V. Chloroquine affects biosynthesis of Ia molecules by inhibiting dissociation of invariant (gamma) chains from alpha-beta dimers in B cells. J Exp Med. 1985 Oct 1;162(4):1371–1376. doi: 10.1084/jem.162.4.1371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Phillips M. L., Yip C. C., Shevach E. M., Delovitch T. L. Photoaffinity labeling demonstrates binding between Ia molecules and nominal antigen on antigen-presenting cells. Proc Natl Acad Sci U S A. 1986 Aug;83(15):5634–5638. doi: 10.1073/pnas.83.15.5634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Pletscher M., Pernis B. Internalized membrane immunoglobulin meets intracytoplasmic DR antigen in human B lymphoblastoid cells. Eur J Immunol. 1983 Jul;13(7):581–584. doi: 10.1002/eji.1830130713. [DOI] [PubMed] [Google Scholar]
  44. Roosnek E., Demotz S., Corradin G., Lanzavecchia A. Kinetics of MHC-antigen complex formation on antigen-presenting cells. J Immunol. 1988 Jun 15;140(12):4079–4082. [PubMed] [Google Scholar]
  45. Snider D. P., Segal D. M. Efficiency of antigen presentation after antigen targeting to surface IgD, IgM, MHC, Fc gamma RII, and B220 molecules on murine splenic B cells. J Immunol. 1989 Jul 1;143(1):59–65. [PubMed] [Google Scholar]
  46. Snider D. P., Segal D. M. Targeted antigen presentation using crosslinked antibody heteroaggregates. J Immunol. 1987 Sep 1;139(5):1609–1616. [PubMed] [Google Scholar]
  47. Steinman R. M., Cohn Z. A. The interaction of soluble horseradish peroxidase with mouse peritoneal macrophages in vitro. J Cell Biol. 1972 Oct;55(1):186–204. doi: 10.1083/jcb.55.1.186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Steinman R. M., Mellman I. S., Muller W. A., Cohn Z. A. Endocytosis and the recycling of plasma membrane. J Cell Biol. 1983 Jan;96(1):1–27. doi: 10.1083/jcb.96.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Swanson J. A., Yirinec B. D., Silverstein S. C. Phorbol esters and horseradish peroxidase stimulate pinocytosis and redirect the flow of pinocytosed fluid in macrophages. J Cell Biol. 1985 Mar;100(3):851–859. doi: 10.1083/jcb.100.3.851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Thomas D. W. Hapten-specific T lymphocyte activation by glutaraldehyde-treated macrophages: an argument against antigen processing by macrophages. J Immunol. 1978 Nov;121(5):1760–1766. [PubMed] [Google Scholar]
  51. Tse D. B., Cantor C. R., McDowell J., Pernis B. Recycling class I MHC antigens: dynamics of internalization, acidification, and ligand-degradation in murine T lymphoblasts. J Mol Cell Immunol. 1986;2(6):315–329. [PubMed] [Google Scholar]
  52. Tse D. B., Pernis B. Spontaneous internalization of Class I major histocompatibility complex molecules in T lymphoid cells. J Exp Med. 1984 Jan 1;159(1):193–207. doi: 10.1084/jem.159.1.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Tycko B., Maxfield F. R. Rapid acidification of endocytic vesicles containing alpha 2-macroglobulin. Cell. 1982 Mar;28(3):643–651. doi: 10.1016/0092-8674(82)90219-7. [DOI] [PubMed] [Google Scholar]
  54. Unanue E. R. Antigen-presenting function of the macrophage. Annu Rev Immunol. 1984;2:395–428. doi: 10.1146/annurev.iy.02.040184.002143. [DOI] [PubMed] [Google Scholar]
  55. Watts C., Davidson H. W. Endocytosis and recycling of specific antigen by human B cell lines. EMBO J. 1988 Jul;7(7):1937–1945. doi: 10.1002/j.1460-2075.1988.tb03031.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Watts T. H., Gariépy J., Schoolnik G. K., McConnell H. M. T-cell activation by peptide antigen: effect of peptide sequence and method of antigen presentation. Proc Natl Acad Sci U S A. 1985 Aug;82(16):5480–5484. doi: 10.1073/pnas.82.16.5480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Watts T. H., McConnell H. M. Biophysical aspects of antigen recognition by T cells. Annu Rev Immunol. 1987;5:461–475. doi: 10.1146/annurev.iy.05.040187.002333. [DOI] [PubMed] [Google Scholar]
  58. Watts T. H., McConnell H. M. High-affinity fluorescent peptide binding to I-Ad in lipid membranes. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9660–9664. doi: 10.1073/pnas.83.24.9660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Wiley H. S., Cunningham D. D. A steady state model for analyzing the cellular binding, internalization and degradation of polypeptide ligands. Cell. 1981 Aug;25(2):433–440. doi: 10.1016/0092-8674(81)90061-1. [DOI] [PubMed] [Google Scholar]
  60. Yamashiro D. J., Maxfield F. R. Acidification of endocytic compartments and the intracellular pathways of ligands and receptors. J Cell Biochem. 1984;26(4):231–246. doi: 10.1002/jcb.240260404. [DOI] [PubMed] [Google Scholar]
  61. Ziegler H. K., Unanue E. R. Decrease in macrophage antigen catabolism caused by ammonia and chloroquine is associated with inhibition of antigen presentation to T cells. Proc Natl Acad Sci U S A. 1982 Jan;79(1):175–178. doi: 10.1073/pnas.79.1.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Zigmond S. H., Sullivan S. J., Lauffenburger D. A. Kinetic analysis of chemotactic peptide receptor modulation. J Cell Biol. 1982 Jan;92(1):34–43. doi: 10.1083/jcb.92.1.34. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES