Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1990 Jul 1;111(1):201–207. doi: 10.1083/jcb.111.1.201

Cell cycle commitment of rat muscle satellite cells

PMCID: PMC2116175  PMID: 2365732

Abstract

Satellite cells of adult muscle are quiescent myogenic stem cells that can be induced to enter the cell cycle by an extract of crushed muscle (Bischoff, R. 1986. Dev. Biol. 115:140-147). Here, evidence is presented that the extract acts transiently to commit cells to enter the cell cycle. Satellite cells associated with both live and killed rat myofibers in culture were briefly exposed to muscle extract and the increase in cell number was determined at 48 h in vitro, before the onset of fusion. An 8-12-h exposure to extract with killed, but not live, myofibers was sufficient to produce maximum proliferation of satellite cells. Continuous exposure for over 40 h was needed to sustain proliferation of satellite cells on live myofibers. The role of serum factors was also studied. Neither serum nor muscle extract alone was able to induce proliferation of satellite cells. In the presence of muscle extract, however, satellite cell proliferation was directly proportional to the concentration of serum in the medium. These results suggest that mitogens released from crushed muscle produce long-lasting effects that commit quiescent satellite cells to divide, whereas serum factors are needed to maintain progression through the cell cycle. Contact with a viable myofiber modulates the response of satellite cells to growth factors.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen R. E., Dodson M. V., Luiten L. S. Regulation of skeletal muscle satellite cell proliferation by bovine pituitary fibroblast growth factor. Exp Cell Res. 1984 May;152(1):154–160. doi: 10.1016/0014-4827(84)90239-8. [DOI] [PubMed] [Google Scholar]
  2. Appell H. J., Forsberg S., Hollmann W. Satellite cell activation in human skeletal muscle after training: evidence for muscle fiber neoformation. Int J Sports Med. 1988 Aug;9(4):297–299. doi: 10.1055/s-2007-1025026. [DOI] [PubMed] [Google Scholar]
  3. Armand O., Boutineau A. M., Mauger A., Pautou M. P., Kieny M. Origin of satellite cells in avian skeletal muscles. Arch Anat Microsc Morphol Exp. 1983;72(2):163–181. [PubMed] [Google Scholar]
  4. Beck F., Samani N. J., Byrne S., Morgan K., Gebhard R., Brammar W. J. Histochemical localization of IGF-I and IGF-II mRNA in the rat between birth and adulthood. Development. 1988 Sep;104(1):29–39. doi: 10.1242/dev.104.1.29. [DOI] [PubMed] [Google Scholar]
  5. Bischoff R. A satellite cell mitogen from crushed adult muscle. Dev Biol. 1986 May;115(1):140–147. doi: 10.1016/0012-1606(86)90235-6. [DOI] [PubMed] [Google Scholar]
  6. Bischoff R. Analysis of muscle regeneration using single myofibers in culture. Med Sci Sports Exerc. 1989 Oct;21(5 Suppl):S164–S172. [PubMed] [Google Scholar]
  7. Bischoff R., Holtzer H. Mitosis and the processes of differentiation of myogenic cells in vitro. J Cell Biol. 1969 Apr;41(1):188–200. doi: 10.1083/jcb.41.1.188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bischoff R. Proliferation of muscle satellite cells on intact myofibers in culture. Dev Biol. 1986 May;115(1):129–139. doi: 10.1016/0012-1606(86)90234-4. [DOI] [PubMed] [Google Scholar]
  9. Carlson B. M. Regeneration fo the completely excised gastrocnemius muscle in the frog and rat from minced muscle fragments. J Morphol. 1968 Aug;125(4):447–472. doi: 10.1002/jmor.1051250405. [DOI] [PubMed] [Google Scholar]
  10. Clegg C. H., Linkhart T. A., Olwin B. B., Hauschka S. D. Growth factor control of skeletal muscle differentiation: commitment to terminal differentiation occurs in G1 phase and is repressed by fibroblast growth factor. J Cell Biol. 1987 Aug;105(2):949–956. doi: 10.1083/jcb.105.2.949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Darr K. C., Schultz E. Exercise-induced satellite cell activation in growing and mature skeletal muscle. J Appl Physiol (1985) 1987 Nov;63(5):1816–1821. doi: 10.1152/jappl.1987.63.5.1816. [DOI] [PubMed] [Google Scholar]
  12. DiMario J., Buffinger N., Yamada S., Strohman R. C. Fibroblast growth factor in the extracellular matrix of dystrophic (mdx) mouse muscle. Science. 1989 May 12;244(4905):688–690. doi: 10.1126/science.2717945. [DOI] [PubMed] [Google Scholar]
  13. DiMario J., Strohman R. C. Satellite cells from dystrophic (mdx) mouse muscle are stimulated by fibroblast growth factor in vitro. Differentiation. 1988 Nov;39(1):42–49. doi: 10.1111/j.1432-0436.1988.tb00079.x. [DOI] [PubMed] [Google Scholar]
  14. Doi T., Striker L. J., Elliot S. J., Conti F. G., Striker G. E. Insulinlike growth factor-1 is a progression factor for human mesangial cells. Am J Pathol. 1989 Feb;134(2):395–404. [PMC free article] [PubMed] [Google Scholar]
  15. Elsdale T., Foley R. Morphogenetic aspects of multilayering in Petri dish cultures of human fetal lung fibroblasts. J Cell Biol. 1969 Apr;41(1):298–311. doi: 10.1083/jcb.41.1.298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Florini J. R. Hormonal control of muscle growth. Muscle Nerve. 1987 Sep;10(7):577–598. doi: 10.1002/mus.880100702. [DOI] [PubMed] [Google Scholar]
  17. Florini J. R., Magri K. A. Effects of growth factors on myogenic differentiation. Am J Physiol. 1989 Apr;256(4 Pt 1):C701–C711. doi: 10.1152/ajpcell.1989.256.4.C701. [DOI] [PubMed] [Google Scholar]
  18. Foster A. H., Carlson B. M. Myotoxicity of local anesthetics and regeneration of the damaged muscle fibers. Anesth Analg. 1980 Oct;59(10):727–736. [PubMed] [Google Scholar]
  19. Hefley T. J., Stern P. H., Brand J. S. Enzymatic isolation of cells from neonatal calvaria using two purified enzymes from Clostridium histolyticum. Exp Cell Res. 1983 Nov;149(1):227–236. doi: 10.1016/0014-4827(83)90394-4. [DOI] [PubMed] [Google Scholar]
  20. Hortobágyi T., Denahan T. Variability in creatine kinase: methodological, exercise, and clinically related factors. Int J Sports Med. 1989 Apr;10(2):69–80. doi: 10.1055/s-2007-1024878. [DOI] [PubMed] [Google Scholar]
  21. Jennische E., Hansson H. A. Regenerating skeletal muscle cells express insulin-like growth factor I. Acta Physiol Scand. 1987 Jun;130(2):327–332. doi: 10.1111/j.1748-1716.1987.tb08144.x. [DOI] [PubMed] [Google Scholar]
  22. Jennische E., Skottner A., Hansson H. A. Satellite cells express the trophic factor IGF-I in regenerating skeletal muscle. Acta Physiol Scand. 1987 Jan;129(1):9–15. doi: 10.1111/j.1748-1716.1987.tb08034.x. [DOI] [PubMed] [Google Scholar]
  23. Joseph-Silverstein J., Consigli S. A., Lyser K. M., Ver Pault C. Basic fibroblast growth factor in the chick embryo: immunolocalization to striated muscle cells and their precursors. J Cell Biol. 1989 Jun;108(6):2459–2466. doi: 10.1083/jcb.108.6.2459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kardami E., Spector D., Strohman R. C. Myogenic growth factor present in skeletal muscle is purified by heparin-affinity chromatography. Proc Natl Acad Sci U S A. 1985 Dec;82(23):8044–8047. doi: 10.1073/pnas.82.23.8044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kelly A. M. Satellite cells and myofiber growth in the rat soleus and extensor digitorum longus muscles. Dev Biol. 1978 Jul;65(1):1–10. doi: 10.1016/0012-1606(78)90174-4. [DOI] [PubMed] [Google Scholar]
  26. Kouyoumdjian J. A., Harris J. B., Johnson M. A. Muscle necrosis caused by the sub-units of crotoxin. Toxicon. 1986;24(6):575–583. doi: 10.1016/0041-0101(86)90178-9. [DOI] [PubMed] [Google Scholar]
  27. Lathrop B., Olson E., Glaser L. Control by fibroblast growth factor of differentiation in the BC3H1 muscle cell line. J Cell Biol. 1985 May;100(5):1540–1547. doi: 10.1083/jcb.100.5.1540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Leof E. B., Wharton W., van Wyk J. J., Pledger W. J. Epidermal growth factor (EGF) and somatomedin C regulate G1 progression in competent BALB/c-3T3 cells. Exp Cell Res. 1982 Sep;141(1):107–115. doi: 10.1016/0014-4827(82)90073-8. [DOI] [PubMed] [Google Scholar]
  29. Maltin C. A., Harris J. B., Cullen M. J. Regeneration of mammalian skeletal muscle following the injection of the snake-venom toxin, taipoxin. Cell Tissue Res. 1983;232(3):565–577. doi: 10.1007/BF00216429. [DOI] [PubMed] [Google Scholar]
  30. McGeachie J. K., Grounds M. D. Initiation and duration of muscle precursor replication after mild and severe injury to skeletal muscle of mice. An autoradiographic study. Cell Tissue Res. 1987 Apr;248(1):125–130. doi: 10.1007/BF01239972. [DOI] [PubMed] [Google Scholar]
  31. Moses A. C., Nissley S. P., Short P. A., Rechler M. M., White R. M., Knight A. B., Higa O. Z. Increased levels of multiplication-stimulating activity, an insulin-like growth factor, in fetal rat serum. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3649–3653. doi: 10.1073/pnas.77.6.3649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Murray M. A., Robbins N. Cell proliferation in denervated muscle: identity and origin of dividing cells. Neuroscience. 1982 Jul;7(7):1823–1833. doi: 10.1016/0306-4522(82)90040-9. [DOI] [PubMed] [Google Scholar]
  33. Noakes T. D. Effect of exercise on serum enzyme activities in humans. Sports Med. 1987 Jul-Aug;4(4):245–267. doi: 10.2165/00007256-198704040-00003. [DOI] [PubMed] [Google Scholar]
  34. Ontell M. Muscle satellite cells: a validated technique for light microscopic identification and a quantitative study of changes in their population following denervation. Anat Rec. 1974 Feb;178(2):211–227. doi: 10.1002/ar.1091780206. [DOI] [PubMed] [Google Scholar]
  35. Pledger W. J., Stiles C. D., Antoniades H. N., Scher C. D. Induction of DNA synthesis in BALB/c 3T3 cells by serum components: reevaluation of the commitment process. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4481–4485. doi: 10.1073/pnas.74.10.4481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Prescott D. M. Cell reproduction. Int Rev Cytol. 1987;100:93–128. doi: 10.1016/s0074-7696(08)61699-x. [DOI] [PubMed] [Google Scholar]
  37. Roberts P., McGeachie J. K., Grounds M. D., Smith E. R. Initiation and duration of myogenic precursor cell replication in transplants of intact skeletal muscles: an autoradiographic study in mice. Anat Rec. 1989 May;224(1):1–6. doi: 10.1002/ar.1092240102. [DOI] [PubMed] [Google Scholar]
  38. Schiaffino S., Bormioli S. P., Aloisi M. The fate of newly formed satellite cells during compensatory muscle hypertrophy. Virchows Arch B Cell Pathol. 1976 Aug 11;21(2):113–118. doi: 10.1007/BF02899148. [DOI] [PubMed] [Google Scholar]
  39. Shafiq S. A., Gorycki M. A. Regeneration in skeletal muscle of mouse: some electron-microscope observations. J Pathol Bacteriol. 1965 Jul;90(1):123–127. doi: 10.1002/path.1700900113. [DOI] [PubMed] [Google Scholar]
  40. Shipley G. D., Ham R. G. Control of entry of Swiss 3T3 cells into S phase by fibroblast growth factor under serum-free conditions. Exp Cell Res. 1983 Jul;146(2):261–270. doi: 10.1016/0014-4827(83)90128-3. [DOI] [PubMed] [Google Scholar]
  41. Stiles C. D., Capone G. T., Scher C. D., Antoniades H. N., Van Wyk J. J., Pledger W. J. Dual control of cell growth by somatomedins and platelet-derived growth factor. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1279–1283. doi: 10.1073/pnas.76.3.1279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Taylor N. A., Wilkinson J. G. Exercise-induced skeletal muscle growth. Hypertrophy or hyperplasia? Sports Med. 1986 May-Jun;3(3):190–200. doi: 10.2165/00007256-198603030-00003. [DOI] [PubMed] [Google Scholar]
  43. Teräväinen H. Satellite cells of striated muscle after compression injury so slight as not to cause degeneration of the muscle fibres. Z Zellforsch Mikrosk Anat. 1970;103(3):320–327. doi: 10.1007/BF00335276. [DOI] [PubMed] [Google Scholar]
  44. White T. P., Esser K. A. Satellite cell and growth factor involvement in skeletal muscle growth. Med Sci Sports Exerc. 1989 Oct;21(5 Suppl):S158–S163. [PubMed] [Google Scholar]
  45. Yamada S., Buffinger N., DiMario J., Strohman R. C. Fibroblast growth factor is stored in fiber extracellular matrix and plays a role in regulating muscle hypertrophy. Med Sci Sports Exerc. 1989 Oct;21(5 Suppl):S173–S180. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES