Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1990 Aug 1;111(2):625–633. doi: 10.1083/jcb.111.2.625

Glycolipids and transmembrane signaling: antibodies to galactocerebroside cause an influx of calcium in oligodendrocytes

PMCID: PMC2116199  PMID: 2166054

Abstract

This is the first study to provide evidence that one function for the surface glycolipid galactocerebroside (GalC) is participation in the opening of Ca2+ channels in oligodendroglia in culture. This glycolipid is a unique differentiation marker for myelin-producing cells; antibodies to GalC have been shown to markedly alter oligodendroglial morphology via disruption of microtubules (Dyer, C. A., and J. A. Benjamins. 1988. J. Neurosci. 8:4307-4318). This study demonstrates that extracellular EGTA blocks anti-GalC-induced disassembly of microtubules in oligodendroglial membrane sheets, demonstrating that an influx of extracellular Ca2+ mediates the cytoskeletal changes. The Ca2+ influx was examined directly by loading oligodendroglia with the fluorescent dye Indo-1 in defined medium, and measuring changes in Ca2+ in individual cells with a laser cytometer. Upon addition of anti-GalC IgG, a marked sustained increase in intracellular Ca2+ occurred in 80% of the oligodendroglia observed. EGTA blocked the increase, indicating the increase is due to an influx of extracellular Ca2+, and not due to release from intracellular stores. The effect is specific, since Ca2+ levels remain normal in oligodendroglia treated with nonimmune IgG; astrocytes do not respond to the anti-GalC. The Ca2+ response in oligodendrocytes is dependent on concentration of antibody and GalC on the oligodendroglial membrane surface. The Ca2+ influx is not mediated by voltage-sensitive Ca2+ channels: it is not blocked by cadmium, and depolarization with K+ does not mimic the response. The kinetics of the response suggest that second messenger-mediated opening of Ca2+ channels is involved.

Full Text

The Full Text of this article is available as a PDF (3.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bansal R., Pfeiffer S. E. Reversible inhibition of oligodendrocyte progenitor differentiation by a monoclonal antibody against surface galactolipids. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6181–6185. doi: 10.1073/pnas.86.16.6181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barres B. A., Chun L. L., Corey D. P. Calcium current in cortical astrocytes: induction by cAMP and neurotransmitters and permissive effect of serum factors. J Neurosci. 1989 Sep;9(9):3169–3175. doi: 10.1523/JNEUROSCI.09-09-03169.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barres B. A., Chun L. L., Corey D. P. Ion channel expression by white matter glia: I. Type 2 astrocytes and oligodendrocytes. Glia. 1988;1(1):10–30. doi: 10.1002/glia.440010104. [DOI] [PubMed] [Google Scholar]
  4. Benjamins J. A., Callahan R. E., Montgomery I. N., Studzinski D. M., Dyer C. A. Production and characterization of high titer antibodies to galactocerebroside. J Neuroimmunol. 1987 Apr;14(3):325–338. doi: 10.1016/0165-5728(87)90019-1. [DOI] [PubMed] [Google Scholar]
  5. Bijsterbosch M. K., Rigley K. P., Klaus G. G. Cross-linking of surface immunoglobulin on B lymphocytes induces both intracellular Ca2+ release and Ca2+ influx: analysis with indo-1. Biochem Biophys Res Commun. 1986 May 29;137(1):500–506. doi: 10.1016/0006-291x(86)91238-6. [DOI] [PubMed] [Google Scholar]
  6. Bottenstein J. E. Growth requirements in vitro of oligodendrocyte cell lines and neonatal rat brain oligodendrocytes. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1955–1959. doi: 10.1073/pnas.83.6.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Braun J., Unanue E. R. The lymphocyte cytoskeleton and its control of surface receptor functions. Semin Hematol. 1983 Oct;20(4):322–333. [PubMed] [Google Scholar]
  8. Curatolo W. Glycolipid function. Biochim Biophys Acta. 1987 Jun 24;906(2):137–160. doi: 10.1016/0304-4157(87)90009-8. [DOI] [PubMed] [Google Scholar]
  9. Diaz M., Bornstein M. B., Raine C. S. Disorganization of myelinogenesis in tissue culture by anti-CNS antiserum. Brain Res. 1978 Oct 13;154(2):231–239. doi: 10.1016/0006-8993(78)90697-2. [DOI] [PubMed] [Google Scholar]
  10. Dixon S. J., Stewart D., Grinstein S., Spiegel S. Transmembrane signaling by the B subunit of cholera toxin: increased cytoplasmic free calcium in rat lymphocytes. J Cell Biol. 1987 Sep;105(3):1153–1161. doi: 10.1083/jcb.105.3.1153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dorfman S. H., Fry J. M., Silberberg D. H. Antiserum induced myelination inhibition in vitro without complement. Brain Res. 1979 Nov 9;177(1):105–114. doi: 10.1016/0006-8993(79)90921-1. [DOI] [PubMed] [Google Scholar]
  12. Dyer C. A., Benjamins J. A. Antibody to galactocerebroside alters organization of oligodendroglial membrane sheets in culture. J Neurosci. 1988 Nov;8(11):4307–4318. doi: 10.1523/JNEUROSCI.08-11-04307.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dyer C. A., Benjamins J. A. Organization of oligodendroglial membrane sheets: II. Galactocerebroside:antibody interactions signal changes in cytoskeleton and myelin basic protein. J Neurosci Res. 1989 Oct;24(2):212–221. doi: 10.1002/jnr.490240212. [DOI] [PubMed] [Google Scholar]
  14. Exton J. H. Mechanisms of action of calcium-mobilizing agonists: some variations on a young theme. FASEB J. 1988 Aug;2(11):2670–2676. doi: 10.1096/fasebj.2.11.2456243. [DOI] [PubMed] [Google Scholar]
  15. Facci L., Skaper S. D., Favaron M., Leon A. A role for gangliosides in astroglial cell differentiation in vitro. J Cell Biol. 1988 Mar;106(3):821–828. doi: 10.1083/jcb.106.3.821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Finkel T. H., McDuffie M., Kappler J. W., Marrack P., Cambier J. C. Both immature and mature T cells mobilize Ca2+ in response to antigen receptor crosslinking. Nature. 1987 Nov 12;330(6144):179–181. doi: 10.1038/330179a0. [DOI] [PubMed] [Google Scholar]
  17. Fishman P. H. Role of membrane gangliosides in the binding and action of bacterial toxins. J Membr Biol. 1982;69(2):85–97. doi: 10.1007/BF01872268. [DOI] [PubMed] [Google Scholar]
  18. Grant C. W., Peters M. W. Lectin-membrane interactions. Information from model systems. Biochim Biophys Acta. 1984 Dec 4;779(4):403–422. doi: 10.1016/0304-4157(84)90018-2. [DOI] [PubMed] [Google Scholar]
  19. Gray L. S., Gnarra J. R., Engelhard V. H. Demonstration of a calcium influx in cytolytic T lymphocytes in response to target cell binding. J Immunol. 1987 Jan 1;138(1):63–69. [PubMed] [Google Scholar]
  20. Hakomori S. Glycosphingolipids in cellular interaction, differentiation, and oncogenesis. Annu Rev Biochem. 1981;50:733–764. doi: 10.1146/annurev.bi.50.070181.003505. [DOI] [PubMed] [Google Scholar]
  21. Keith C. H., Bajer A. S., Ratan R., Maxfield F. R., Shelanski M. L. Calcium and calmodulin in the regulation of the microtubular cytoskeleton. Ann N Y Acad Sci. 1986;466:375–391. doi: 10.1111/j.1749-6632.1986.tb38407.x. [DOI] [PubMed] [Google Scholar]
  22. Knight D. E. Calcium and diacylglycerol control of secretion. Biosci Rep. 1987 May;7(5):355–367. doi: 10.1007/BF01362500. [DOI] [PubMed] [Google Scholar]
  23. Kono T., Robinson F. W., Blevins T. L., Ezaki O. Evidence that translocation of the glucose transport activity is the major mechanism of insulin action on glucose transport in fat cells. J Biol Chem. 1982 Sep 25;257(18):10942–10947. [PubMed] [Google Scholar]
  24. Ledbetter J. A., June C. H., Grosmaire L. S., Rabinovitch P. S. Crosslinking of surface antigens causes mobilization of intracellular ionized calcium in T lymphocytes. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1384–1388. doi: 10.1073/pnas.84.5.1384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Marcum J. M., Dedman J. R., Brinkley B. R., Means A. R. Control of microtubule assembly-disassembly by calcium-dependent regulator protein. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3771–3775. doi: 10.1073/pnas.75.8.3771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Meldolesi J., Pozzan T. Pathways of Ca2+ influx at the plasma membrane: voltage-, receptor-, and second messenger-operated channels. Exp Cell Res. 1987 Aug;171(2):271–283. doi: 10.1016/0014-4827(87)90161-3. [DOI] [PubMed] [Google Scholar]
  27. Merritt J. E., Rink T. J. Regulation of cytosolic free calcium in fura-2-loaded rat parotid acinar cells. J Biol Chem. 1987 Dec 25;262(36):17362–17369. [PubMed] [Google Scholar]
  28. Mohr F. C., Fewtrell C. Depolarization of rat basophilic leukemia cells inhibits calcium uptake and exocytosis. J Cell Biol. 1987 Mar;104(3):783–792. doi: 10.1083/jcb.104.3.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Penner R., Matthews G., Neher E. Regulation of calcium influx by second messengers in rat mast cells. Nature. 1988 Aug 11;334(6182):499–504. doi: 10.1038/334499a0. [DOI] [PubMed] [Google Scholar]
  30. Rosenthal W., Hescheler J., Trautwein W., Schultz G. Control of voltage-dependent Ca2+ channels by G protein-coupled receptors. FASEB J. 1988 Sep;2(12):2784–2790. doi: 10.1096/fasebj.2.12.2457531. [DOI] [PubMed] [Google Scholar]
  31. Schwartz G. J., Al-Awqati Q. Regulation of transepithelial H+ transport by exocytosis and endocytosis. Annu Rev Physiol. 1986;48:153–161. doi: 10.1146/annurev.ph.48.030186.001101. [DOI] [PubMed] [Google Scholar]
  32. Sharom F. J., Grant C. W. A model for ganglioside behaviour in cell membranes. Biochim Biophys Acta. 1978 Feb 21;507(2):280–293. doi: 10.1016/0005-2736(78)90423-6. [DOI] [PubMed] [Google Scholar]
  33. Shirazi Y., Imagawa D. K., Shin M. L. Release of leukotriene B4 from sublethally injured oligodendrocytes by terminal complement complexes. J Neurochem. 1987 Jan;48(1):271–278. doi: 10.1111/j.1471-4159.1987.tb13158.x. [DOI] [PubMed] [Google Scholar]
  34. Soliven B., Szuchet S., Arnason B. G., Nelson D. J. Forskolin and phorbol esters decrease the same K+ conductance in cultured oligodendrocytes. J Membr Biol. 1988 Oct;105(2):177–186. doi: 10.1007/BF02009170. [DOI] [PubMed] [Google Scholar]
  35. Sontheimer H., Trotter J., Schachner M., Kettenmann H. Channel expression correlates with differentiation stage during the development of oligodendrocytes from their precursor cells in culture. Neuron. 1989 Feb;2(2):1135–1145. doi: 10.1016/0896-6273(89)90180-3. [DOI] [PubMed] [Google Scholar]
  36. Spiegel S., Wilchek M. Membrane sialoglycolipids emerging as possible signal transducers for lymphocyte stimulation. J Immunol. 1981 Aug;127(2):572–575. [PubMed] [Google Scholar]
  37. Thompson T. E., Tillack T. W. Organization of glycosphingolipids in bilayers and plasma membranes of mammalian cells. Annu Rev Biophys Biophys Chem. 1985;14:361–386. doi: 10.1146/annurev.bb.14.060185.002045. [DOI] [PubMed] [Google Scholar]
  38. Wade J. B. Role of membrane fusion in hormonal regulation of epithelial transport. Annu Rev Physiol. 1986;48:213–223. doi: 10.1146/annurev.ph.48.030186.001241. [DOI] [PubMed] [Google Scholar]
  39. Yamamoto H., Fukunaga K., Goto S., Tanaka E., Miyamoto E. Ca2+, calmodulin-dependent regulation of microtubule formation via phosphorylation of microtubule-associated protein 2, tau factor, and tubulin, and comparison with the cyclic AMP-dependent phosphorylation. J Neurochem. 1985 Mar;44(3):759–768. doi: 10.1111/j.1471-4159.1985.tb12880.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES