Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1990 Aug 1;111(2):615–624. doi: 10.1083/jcb.111.2.615

The inositol 1,4,5,-trisphosphate receptor in cerebellar Purkinje cells: quantitative immunogold labeling reveals concentration in an ER subcompartment

PMCID: PMC2116203  PMID: 2166053

Abstract

The Ca2+ mobilization effect of inositol 1,4,5-trisphosphate, the second messenger generated via receptor-stimulated hydrolysis of phosphatidylinositol 4,5-bisphosphate, is mediated by binding to intracellular receptors, which are expressed in high concentration in cerebellar Purkinje cells. Partially conflicting previous reports localized the receptor to various subcellular structures: elements of ER, both rough and smooth-surfaced, the nuclear envelope, and even the plasma membrane. We have now reinvestigated the problem quantitatively by using cryosections of rat cerebellar tissue immunolabeled with polyclonal monospecific antibodies against the inositol 1,4,5- trisphosphate receptor. By immunofluorescence the receptor was detected only in Purkinje cells, whereas the other cells of the cerebellar cortex remained negative. In immunogold-decorated ultrathin cryosections of the Purkinje cell body, the receptor was concentrated in cisternal stacks (piles of up to 12 parallel cisternae separated by regularly spaced bridges, located both in the deep cytoplasm and beneath the plasma membrane; average density, greater than 5 particles/micron of membrane profile); in cisternal singlets and doublets adjacent to the plasma membrane (average density, approximately 2.5 particles/micron); and in other apparently smooth- surfaced vesicular and tubular profiles. Additional smooth-surfaced elements were unlabeled. Perinuclear and rough-surfaced ER cisternae were labeled much less by themselves (approximately 0.5 particles/micron, two- to threefold the background), but were often in direct membrane continuity with heavily labeled, smooth-surfaced tubules and cisternal stacks. Finally, mitochondria, Golgi cisternae, multivesicular bodies, and the plasma membrane were unlabeled. In dendrites, approximately half of the nonmitochondrial, membrane-bound structures (cisternae, tubules, and vesicles), as well as small cisternal stacks, were labeled. Dendritic spines always contained immunolabeled cisternae and vesicles. The dendritic plasma membrane, of both shaft and spines, was consistently unlabeled. These results identify a large, smooth-surfaced ER subcompartment that appears equipped to play a key role in the control of Ca2+ homeostasis: in particular, in the generation of [Ca2+]i transients triggered by activation of specific receptors, such as the quisqualate-preferring trans(+/-)-1-amino-1,3-cyclopentamedicarboxylic acid glutamatergic receptors, which are largely expressed by Purkinje cells.

Full Text

The Full Text of this article is available as a PDF (4.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ambrosini A., Meldolesi J. Muscarinic and quisqualate receptor-induced phosphoinositide hydrolysis in primary cultures of striatal and hippocampal neurons. Evidence for differential mechanisms of activation. J Neurochem. 1989 Sep;53(3):825–833. doi: 10.1111/j.1471-4159.1989.tb11779.x. [DOI] [PubMed] [Google Scholar]
  2. Andrews S. B., Leapman R. D., Landis D. M., Reese T. S. Activity-dependent accumulation of calcium in Purkinje cell dendritic spines. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1682–1685. doi: 10.1073/pnas.85.5.1682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berridge M. J., Irvine R. F. Inositol phosphates and cell signalling. Nature. 1989 Sep 21;341(6239):197–205. doi: 10.1038/341197a0. [DOI] [PubMed] [Google Scholar]
  4. Blackstone C. D., Supattapone S., Snyder S. H. Inositolphospholipid-linked glutamate receptors mediate cerebellar parallel-fiber-Purkinje-cell synaptic transmission. Proc Natl Acad Sci U S A. 1989 Jun;86(11):4316–4320. doi: 10.1073/pnas.86.11.4316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ferris C. D., Huganir R. L., Supattapone S., Snyder S. H. Purified inositol 1,4,5-trisphosphate receptor mediates calcium flux in reconstituted lipid vesicles. Nature. 1989 Nov 2;342(6245):87–89. doi: 10.1038/342087a0. [DOI] [PubMed] [Google Scholar]
  6. Fiori M. G., Mugnaini E. Subsurface and cytoplasmic cisterns associated with mitochondria in pyramidal neurons of the rat dorsal cochlear nucleus. Neuroscience. 1981;6(3):461–467. doi: 10.1016/0306-4522(81)90138-x. [DOI] [PubMed] [Google Scholar]
  7. Franzini-Armstrong C., Nunzi G. Junctional feet and particles in the triads of a fast-twitch muscle fibre. J Muscle Res Cell Motil. 1983 Apr;4(2):233–252. doi: 10.1007/BF00712033. [DOI] [PubMed] [Google Scholar]
  8. Furuichi T., Yoshikawa S., Miyawaki A., Wada K., Maeda N., Mikoshiba K. Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400. Nature. 1989 Nov 2;342(6245):32–38. doi: 10.1038/342032a0. [DOI] [PubMed] [Google Scholar]
  9. Ghosh T. K., Mullaney J. M., Tarazi F. I., Gill D. L. GTP-activated communication between distinct inositol 1,4,5-trisphosphate-sensitive and -insensitive calcium pools. Nature. 1989 Jul 20;340(6230):236–239. doi: 10.1038/340236a0. [DOI] [PubMed] [Google Scholar]
  10. Griffiths G., Hoppeler H. Quantitation in immunocytochemistry: correlation of immunogold labeling to absolute number of membrane antigens. J Histochem Cytochem. 1986 Nov;34(11):1389–1398. doi: 10.1177/34.11.3534077. [DOI] [PubMed] [Google Scholar]
  11. Groswald D. E., Kelly P. T. Evidence that a cerebellum-enriched, synaptic junction glycoprotein is related to fodrin and resists extraction with triton in a calcium-dependent manner. J Neurochem. 1984 Feb;42(2):534–546. doi: 10.1111/j.1471-4159.1984.tb02711.x. [DOI] [PubMed] [Google Scholar]
  12. Guillemette G., Balla T., Baukal A. J., Catt K. J. Inositol 1,4,5-trisphosphate binds to a specific receptor and releases microsomal calcium in the anterior pituitary gland. Proc Natl Acad Sci U S A. 1987 Dec;84(23):8195–8199. doi: 10.1073/pnas.84.23.8195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Guillemette G., Balla T., Baukal A. J., Spät A., Catt K. J. Intracellular receptors for inositol 1,4,5-trisphosphate in angiotensin II target tissues. J Biol Chem. 1987 Jan 25;262(3):1010–1015. [PubMed] [Google Scholar]
  14. Hashimoto S., Bruno B., Lew D. P., Pozzan T., Volpe P., Meldolesi J. Immunocytochemistry of calciosomes in liver and pancreas. J Cell Biol. 1988 Dec;107(6 Pt 2):2523–2531. doi: 10.1083/jcb.107.6.2523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Henne V., Piiper A., Söling H. D. Inositol 1,4,5-trisphosphate and 5'-GTP induce calcium release from different intracellular pools. FEBS Lett. 1987 Jun 22;218(1):153–158. doi: 10.1016/0014-5793(87)81037-2. [DOI] [PubMed] [Google Scholar]
  16. Kaprielian Z., Campbell A. M., Fambrough D. M. Identification of a Ca2+-ATPase in cerebellar Purkinje cells. Brain Res Mol Brain Res. 1989 Jul;6(1):55–60. doi: 10.1016/0169-328x(89)90028-4. [DOI] [PubMed] [Google Scholar]
  17. Keller G. A., Tokuyasu K. T., Dutton A. H., Singer S. J. An improved procedure for immunoelectron microscopy: ultrathin plastic embedding of immunolabeled ultrathin frozen sections. Proc Natl Acad Sci U S A. 1984 Sep;81(18):5744–5747. doi: 10.1073/pnas.81.18.5744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Krause K. H., Lew P. D. Subcellular distribution of Ca2+ pumping sites in human neutrophils. J Clin Invest. 1987 Jul;80(1):107–116. doi: 10.1172/JCI113035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Maeda N., Niinobe M., Inoue Y., Mikoshiba K. Developmental expression and intracellular location of P400 protein characteristic of Purkinje cells in the mouse cerebellum. Dev Biol. 1989 May;133(1):67–76. doi: 10.1016/0012-1606(89)90297-2. [DOI] [PubMed] [Google Scholar]
  20. Maeda N., Niinobe M., Mikoshiba K. A cerebellar Purkinje cell marker P400 protein is an inositol 1,4,5-trisphosphate (InsP3) receptor protein. Purification and characterization of InsP3 receptor complex. EMBO J. 1990 Jan;9(1):61–67. doi: 10.1002/j.1460-2075.1990.tb08080.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mallet J., Huchet M., Pougeois R., Changeux J. P. Anatomical, physiological and biochemical studies on the cerebellum from mutant mice. III. Protein differences associated with the weaver, staggerer and nervous mutations. Brain Res. 1976 Feb 20;103(2):291–312. doi: 10.1016/0006-8993(76)90800-3. [DOI] [PubMed] [Google Scholar]
  22. Mignery G. A., Südhof T. C., Takei K., De Camilli P. Putative receptor for inositol 1,4,5-trisphosphate similar to ryanodine receptor. Nature. 1989 Nov 9;342(6246):192–195. doi: 10.1038/342192a0. [DOI] [PubMed] [Google Scholar]
  23. Murphy S. N., Miller R. J. Regulation of Ca++ influx into striatal neurons by kainic acid. J Pharmacol Exp Ther. 1989 Apr;249(1):184–193. [PubMed] [Google Scholar]
  24. Nicoletti F., Iadarola M. J., Wroblewski J. T., Costa E. Excitatory amino acid recognition sites coupled with inositol phospholipid metabolism: developmental changes and interaction with alpha 1-adrenoceptors. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1931–1935. doi: 10.1073/pnas.83.6.1931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Prentki M., Biden T. J., Janjic D., Irvine R. F., Berridge M. J., Wollheim C. B. Rapid mobilization of Ca2+ from rat insulinoma microsomes by inositol-1,4,5-trisphosphate. Nature. 1984 Jun 7;309(5968):562–564. doi: 10.1038/309562a0. [DOI] [PubMed] [Google Scholar]
  26. ROSENBLUTH J. Subsurface cisterns and their relationship to the neuronal plasma membrane. J Cell Biol. 1962 Jun;13:405–421. doi: 10.1083/jcb.13.3.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ross C. A., Meldolesi J., Milner T. A., Satoh T., Supattapone S., Snyder S. H. Inositol 1,4,5-trisphosphate receptor localized to endoplasmic reticulum in cerebellar Purkinje neurons. Nature. 1989 Jun 8;339(6224):468–470. doi: 10.1038/339468a0. [DOI] [PubMed] [Google Scholar]
  28. Rossier M. F., Capponi A. M., Vallotton M. B. The inositol 1,4,5-trisphosphate-binding site in adrenal cortical cells is distinct from the endoplasmic reticulum. J Biol Chem. 1989 Aug 25;264(24):14078–14084. [PubMed] [Google Scholar]
  29. Somlyo A. V. Bridging structures spanning the junctioning gap at the triad of skeletal muscle. J Cell Biol. 1979 Mar;80(3):743–750. doi: 10.1083/jcb.80.3.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Spät A., Bradford P. G., McKinney J. S., Rubin R. P., Putney J. W., Jr A saturable receptor for 32P-inositol-1,4,5-triphosphate in hepatocytes and neutrophils. Nature. 1986 Feb 6;319(6053):514–516. doi: 10.1038/319514a0. [DOI] [PubMed] [Google Scholar]
  31. Supattapone S., Danoff S. K., Theibert A., Joseph S. K., Steiner J., Snyder S. H. Cyclic AMP-dependent phosphorylation of a brain inositol trisphosphate receptor decreases its release of calcium. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8747–8750. doi: 10.1073/pnas.85.22.8747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Supattapone S., Worley P. F., Baraban J. M., Snyder S. H. Solubilization, purification, and characterization of an inositol trisphosphate receptor. J Biol Chem. 1988 Jan 25;263(3):1530–1534. [PubMed] [Google Scholar]
  33. Thévenod F., Dehlinger-Kremer M., Kemmer T. P., Christian A. L., Potter B. V., Schulz I. Characterization of inositol 1,4,5-trisphosphate-sensitive (IsCaP) and -insensitive (IisCaP) nonmitochondrial Ca2+ pools in rat pancreatic acinar cells. J Membr Biol. 1989 Jul;109(2):173–186. doi: 10.1007/BF01870856. [DOI] [PubMed] [Google Scholar]
  34. Volpe P., Krause K. H., Hashimoto S., Zorzato F., Pozzan T., Meldolesi J., Lew D. P. "Calciosome," a cytoplasmic organelle: the inositol 1,4,5-trisphosphate-sensitive Ca2+ store of nonmuscle cells? Proc Natl Acad Sci U S A. 1988 Feb;85(4):1091–1095. doi: 10.1073/pnas.85.4.1091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Walaas S. I., Nairn A. C., Greengard P. PCPP-260, a Purkinje cell-specific cyclic AMP-regulated membrane phosphoprotein of Mr 260,000. J Neurosci. 1986 Apr;6(4):954–961. doi: 10.1523/JNEUROSCI.06-04-00954.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Worley P. F., Baraban J. M., Snyder S. H. Inositol 1,4,5-trisphosphate receptor binding: autoradiographic localization in rat brain. J Neurosci. 1989 Jan;9(1):339–346. doi: 10.1523/JNEUROSCI.09-01-00339.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES