Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1990 Aug 1;111(2):391–400. doi: 10.1083/jcb.111.2.391

Inhibition of glycoprotein processing blocks assembly of spicules during development of the sea urchin embryo

PMCID: PMC2116210  PMID: 2143193

Abstract

Previous studies have implicated an 130-kD glycoprotein containing complex, N-linked oligosaccharide chain(s) in the process of spicule formation in sea urchin embryos. To ascertain whether the processing of high mannose oligosaccharides to complex oligosaccharides is necessary for spiculogenesis, intact embryos and cultures of spicule-forming primary mesenchyme cells were treated with glycoprotein processing inhibitors. In both the embryonic and cell culture systems 1- deoxymannojirimycin (1-MMN) and, to a lesser extent, 1-deoxynojirimycin (1-DNJ) inhibited spicule formation. These inhibitors did not affect gastrulation in whole embryos or filopodial network formation in cell cultures. Swainsonine (SWSN) and castanospermine (CSTP) had no effect in either system. Further analysis revealed the following: (a) 1-MMN entered the embryos and blocked glycoprotein processing in the 24-h period before spicule formation as assessed by a twofold increase in endoglycosidase H sensitivity among newly synthesized glycoproteins upon addition of 1-MMN; (b) 1-MMN did not affect general protein synthesis until after its effects on spicule formation were observed; (c) Immunoblot analysis with an antibody directed towards the polypeptide chain of the 130-kD protein (mAb A3) demonstrated that 1- MMN did not affect the level of the polypeptide that is known to be synthesized just before spicule formation; (d) 1-MMN and 1-DNJ almost completely abolished (greater than 95%) the appearance of mAb 1223 reactive complex oligosaccharide moiety associated with the 130-kD glycoprotein; CSTP and SWSN had much less of an effect on expression of this epitope. These results indicate that the conversion of high mannose oligosaccharides to complex oligosaccharides is required for spiculogenesis in sea urchin embryos and they suggest that the 130-kD protein is one of these essential complex glycoproteins.

Full Text

The Full Text of this article is available as a PDF (4.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anstrom J. A., Chin J. E., Leaf D. S., Parks A. L., Raff R. A. Localization and expression of msp130, a primary mesenchyme lineage-specific cell surface protein in the sea urchin embryo. Development. 1987 Oct;101(2):255–265. doi: 10.1242/dev.101.2.255. [DOI] [PubMed] [Google Scholar]
  2. Bhat N. R. Effects of inhibitors of glycoprotein processing on oligodendroglial differentiation in primary cultures of embryonic rat brain cells. J Neurosci Res. 1988;20(2):158–164. doi: 10.1002/jnr.490200203. [DOI] [PubMed] [Google Scholar]
  3. Carson D. D., Farach M. C., Earles D. S., Decker G. L., Lennarz W. J. A monoclonal antibody inhibits calcium accumulation and skeleton formation in cultured embryonic cells of the sea urchin. Cell. 1985 Jun;41(2):639–648. doi: 10.1016/s0092-8674(85)80036-2. [DOI] [PubMed] [Google Scholar]
  4. Carson D. D., Lennarz W. J. Inhibition of polyisoprenoid and glycoprotein biosynthesis causes abnormal embryonic development. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5709–5713. doi: 10.1073/pnas.76.11.5709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carson D. D., Lennarz W. J. Relationship of dolichol synthesis to glycoprotein synthesis during embryonic development. J Biol Chem. 1981 May 10;256(9):4679–4686. [PubMed] [Google Scholar]
  6. Decker G. L., Valdizan M. C., Wessel G. M., Lennarz W. J. Developmental distribution of a cell surface glycoprotein in the sea urchin Strongylocentrotus purpuratus. Dev Biol. 1988 Oct;129(2):339–349. doi: 10.1016/0012-1606(88)90381-8. [DOI] [PubMed] [Google Scholar]
  7. Elbein A. D. Inhibitors of the biosynthesis and processing of N-linked oligosaccharide chains. Annu Rev Biochem. 1987;56:497–534. doi: 10.1146/annurev.bi.56.070187.002433. [DOI] [PubMed] [Google Scholar]
  8. Farach-Carson M. C., Carson D. D., Collier J. L., Lennarz W. J., Park H. R., Wright G. C. A calcium-binding, asparagine-linked oligosaccharide is involved in skeleton formation in the sea urchin embryo. J Cell Biol. 1989 Sep;109(3):1289–1299. doi: 10.1083/jcb.109.3.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Farach M. C., Valdizan M., Park H. R., Decker G. L., Lennarz W. J. Developmental expression of a cell-surface protein involved in calcium uptake and skeleton formation in sea urchin embryos. Dev Biol. 1987 Aug;122(2):320–331. doi: 10.1016/0012-1606(87)90297-1. [DOI] [PubMed] [Google Scholar]
  10. Fuhrmann U., Bause E., Ploegh H. Inhibitors of oligosaccharide processing. Biochim Biophys Acta. 1985 Jun 24;825(2):95–110. doi: 10.1016/0167-4781(85)90095-8. [DOI] [PubMed] [Google Scholar]
  11. Heifetz A., Lennarz W. J. Biosynthesis of N-glycosidically linked glycoproteins during gastrulation of sea urchin embryos. J Biol Chem. 1979 Jul 10;254(13):6119–6127. [PubMed] [Google Scholar]
  12. Holland P. C., Herscovics A. Inhibition of myoblast fusion by the glucosidase inhibitor N-methyl-1-deoxynojirimycin, but not by the mannosidase inhibitor 1-deoxymannojirimycin. Biochem J. 1986 Sep 1;238(2):335–340. doi: 10.1042/bj2380335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Leaf D. S., Anstrom J. A., Chin J. E., Harkey M. A., Showman R. M., Raff R. A. Antibodies to a fusion protein identify a cDNA clone encoding msp130, a primary mesenchyme-specific cell surface protein of the sea urchin embryo. Dev Biol. 1987 May;121(1):29–40. doi: 10.1016/0012-1606(87)90135-7. [DOI] [PubMed] [Google Scholar]
  15. Lennarz W. J. Glycoprotein synthesis and embryonic development. CRC Crit Rev Biochem. 1983;14(4):257–272. doi: 10.3109/10409238309102795. [DOI] [PubMed] [Google Scholar]
  16. McClay D. R. Embryo dissociation, cell isolation, and cell reassociation. Methods Cell Biol. 1986;27:309–323. doi: 10.1016/s0091-679x(08)60355-6. [DOI] [PubMed] [Google Scholar]
  17. Mercurio A. M. Disruption of oligosaccharide processing in murine tumor cells inhibits their susceptibility to lysis by activated mouse macrophages. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2609–2613. doi: 10.1073/pnas.83.8.2609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mintz G. R., DeFrancesco S., Lennarz W. J. Spicule formation by cultured embryonic cells from the sea urchin. J Biol Chem. 1981 Dec 25;256(24):13105–13111. [PubMed] [Google Scholar]
  19. Overton J. Response of aggregating chick corneal cells to modifiers of N-linked oligosaccharides, endoglycosidase H and deoxymannojirimycin. J Cell Sci. 1988 Mar;89(Pt 3):405–413. doi: 10.1242/jcs.89.3.405. [DOI] [PubMed] [Google Scholar]
  20. Pulverer G., Beuth J., Ko H. L., Yassin A., Ohshima Y., Roszkowski K., Uhlenbruck G. Glycoprotein modifications of sarcoma L-1 tumor cells by tunicamycin, swainsonine, bromoconduritol or 1-desoxynojirimycin treatment inhibits their metastatic lung colonization in Balb/c-mice. J Cancer Res Clin Oncol. 1988;114(2):217–220. doi: 10.1007/BF00417842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schneider E. G., Nguyen H. T., Lennarz W. J. The effect of tunicamycin, an inhibitor of protein glycosylation, on embryonic development in the sea urchin. J Biol Chem. 1978 Apr 10;253(7):2348–2355. [PubMed] [Google Scholar]
  22. Spearman M. A., Jamieson J. C., Wright J. A. Studies on the effect of glycoprotein processing inhibitors on fusion of L6 myoblast cell lines. Exp Cell Res. 1987 Jan;168(1):116–126. doi: 10.1016/0014-4827(87)90421-6. [DOI] [PubMed] [Google Scholar]
  23. Trudel G. C., Herscovics A., Holland P. C. Inhibition of myoblast fusion by bromoconduritol. Biochem Cell Biol. 1988 Oct;66(10):1119–1125. doi: 10.1139/o88-129. [DOI] [PubMed] [Google Scholar]
  24. Tulp A., Barnhoorn M., Bause E., Ploegh H. Inhibition of N-linked oligosaccharide trimming mannosidases blocks human B cell development. EMBO J. 1986 Aug;5(8):1783–1790. doi: 10.1002/j.1460-2075.1986.tb04427.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tulsiani D. R., Touster O. Swainsonine causes the production of hybrid glycoproteins by human skin fibroblasts and rat liver Golgi preparations. J Biol Chem. 1983 Jun 25;258(12):7578–7585. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES