Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1990 Oct 1;111(4):1583–1591. doi: 10.1083/jcb.111.4.1583

Identification of a multifunctional, cell-binding peptide sequence from the a1(NC1) of type IV collagen

PMCID: PMC2116235  PMID: 2211826

Abstract

We have previously identified three distinctive amino acid sequences from type IV collagen which specifically bound to heparin and also inhibited the binding of heparin to intact type IV collagen. One of these chemically synthesized domains, peptide Hep-I, has the sequence TAGSCLRKFSTM and originates from the a1(noncollagenous [NC1]) chain of type IV collagen (Koliakos, G. G., K. K. Koliakos, L. T. Furcht, L. A. Reger, and E. C. Tsilibary. 1989. J. Biol. Chem. 264:2313-2323). We describe in this report that this same peptide also bound to intact type IV collagen in solid-phase assays, in a dose-dependent and specific manner. Interactions between peptide Hep-I and type IV collagen in solution resulted in inhibition of the assembly process of this basement membrane glycoprotein. Therefore, peptide Hep-I should represent a major recognition site in type IV collagen when this protein polymerizes to form a network. In addition, solid phase- immobilized peptide Hep-I was able to promote the adhesion and spreading of bovine aortic endothelial cells. When present in solution, peptide Hep-I competed for the binding of these cells to type IV collagen- and NC1 domain-coated substrata in a dose-dependent manner. Furthermore, radiolabeled peptide Hep-I in solution also bound to endothelial cells in a dose-dependent and specific manner. The binding of radiolabeled Hep-I to endothelial cells could be inhibited by an excess of unlabeled peptide. Finally, in the presence of heparin or chondroitin/dermatan sulfate glycosaminoglycan side chains, the binding of endothelial cells to peptide Hep-I and NC1 domain-coated substrates was also inhibited. We conclude that peptide Hep-I should have a number of functions. The role of this type IV collagen-derived sequence in such diverse phenomena as self-association, heparin binding and cell binding and adhesion makes Hep-I a crucial domain involved in the determination of basement membrane ultrastructure and cellular interactions with type IV collagen-containing matrices.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernard M. P., Myers J. C., Chu M. L., Ramirez F., Eikenberry E. F., Prockop D. J. Structure of a cDNA for the pro alpha 2 chain of human type I procollagen. Comparison with chick cDNA for pro alpha 2(I) identifies structurally conserved features of the protein and the gene. Biochemistry. 1983 Mar 1;22(5):1139–1145. doi: 10.1021/bi00274a023. [DOI] [PubMed] [Google Scholar]
  2. Brazel D., Oberbäumer I., Dieringer H., Babel W., Glanville R. W., Deutzmann R., Kühn K. Completion of the amino acid sequence of the alpha 1 chain of human basement membrane collagen (type IV) reveals 21 non-triplet interruptions located within the collagenous domain. Eur J Biochem. 1987 Nov 2;168(3):529–536. doi: 10.1111/j.1432-1033.1987.tb13450.x. [DOI] [PubMed] [Google Scholar]
  3. Brownlee M., Vlassara H., Cerami A. Nonenzymatic glycosylation and the pathogenesis of diabetic complications. Ann Intern Med. 1984 Oct;101(4):527–537. doi: 10.7326/0003-4819-101-4-527. [DOI] [PubMed] [Google Scholar]
  4. Bunn H. F., Shapiro R., McManus M., Garrick L., McDonald M. J., Gallop P. M., Gabbay K. H. Structural heterogeneity of human hemoglobin A due to nonenzymatic glycosylation. J Biol Chem. 1979 May 25;254(10):3892–3898. [PubMed] [Google Scholar]
  5. Burridge K., Fath K., Kelly T., Nuckolls G., Turner C. Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu Rev Cell Biol. 1988;4:487–525. doi: 10.1146/annurev.cb.04.110188.002415. [DOI] [PubMed] [Google Scholar]
  6. Charonis A. S., Tsilibary E. C., Saku T., Furthmayr H. Inhibition of laminin self-assembly and interaction with type IV collagen by antibodies to the terminal domain of the long arm. J Cell Biol. 1986 Nov;103(5):1689–1697. doi: 10.1083/jcb.103.5.1689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Charonis A. S., Tsilibary E. C., Yurchenco P. D., Furthmayr H. Binding of laminin to type IV collagen: a morphological study. J Cell Biol. 1985 Jun;100(6):1848–1853. doi: 10.1083/jcb.100.6.1848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chelberg M. K., Tsilibary E. C., Hauser A. R., McCarthy J. B. Type IV collagen-mediated melanoma cell adhesion and migration: involvement of multiple, distinct domains of the collagen molecule. Cancer Res. 1989 Sep 1;49(17):4796–4802. [PubMed] [Google Scholar]
  9. Day J. F., Thornburg R. W., Thorpe S. R., Baynes J. W. Nonenzymatic glucosylation of rat albumin. Studies in vitro and in vivo. J Biol Chem. 1979 Oct 10;254(19):9394–9400. [PubMed] [Google Scholar]
  10. Dziadek M., Paulsson M., Timpl R. Identification and interaction repertoire of large forms of the basement membrane protein nidogen. EMBO J. 1985 Oct;4(10):2513–2518. doi: 10.1002/j.1460-2075.1985.tb03964.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fujiwara S., Wiedemann H., Timpl R., Lustig A., Engel J. Structure and interactions of heparan sulfate proteoglycans from a mouse tumor basement membrane. Eur J Biochem. 1984 Aug 15;143(1):145–157. doi: 10.1111/j.1432-1033.1984.tb08353.x. [DOI] [PubMed] [Google Scholar]
  12. Ginsberg M., Pierschbacher M. D., Ruoslahti E., Marguerie G., Plow E. Inhibition of fibronectin binding to platelets by proteolytic fragments and synthetic peptides which support fibroblast adhesion. J Biol Chem. 1985 Apr 10;260(7):3931–3936. [PubMed] [Google Scholar]
  13. HUNTER W. M., GREENWOOD F. C. Preparation of iodine-131 labelled human growth hormone of high specific activity. Nature. 1962 May 5;194:495–496. doi: 10.1038/194495a0. [DOI] [PubMed] [Google Scholar]
  14. Haverstick D. M., Cowan J. F., Yamada K. M., Santoro S. A. Inhibition of platelet adhesion to fibronectin, fibrinogen, and von Willebrand factor substrates by a synthetic tetrapeptide derived from the cell-binding domain of fibronectin. Blood. 1985 Oct;66(4):946–952. [PubMed] [Google Scholar]
  15. Herbst T. J., McCarthy J. B., Tsilibary E. C., Furcht L. T. Differential effects of laminin, intact type IV collagen, and specific domains of type IV collagen on endothelial cell adhesion and migration. J Cell Biol. 1988 Apr;106(4):1365–1373. doi: 10.1083/jcb.106.4.1365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hostikka S. L., Kurkinen M., Tryggvason K. Nucleotide sequence coding for the human type IV collagen alpha 2 chain cDNA reveals extensive homology with the NC-1 domain of alpha 1 (IV) but not with the collagenous domain or 3'-untranslated region. FEBS Lett. 1987 Jun 1;216(2):281–286. doi: 10.1016/0014-5793(87)80706-8. [DOI] [PubMed] [Google Scholar]
  17. Koliakos G. G., Kouzi-Koliakos K., Furcht L. T., Reger L. A., Tsilibary E. C. The binding of heparin to type IV collagen: domain specificity with identification of peptide sequences from the alpha 1(IV) and alpha 2(IV) which preferentially bind heparin. J Biol Chem. 1989 Feb 5;264(4):2313–2323. [PubMed] [Google Scholar]
  18. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  19. Laurie G. W., Bing J. T., Kleinman H. K., Hassell J. R., Aumailley M., Martin G. R., Feldmann R. J. Localization of binding sites for laminin, heparan sulfate proteoglycan and fibronectin on basement membrane (type IV) collagen. J Mol Biol. 1986 May 5;189(1):205–216. doi: 10.1016/0022-2836(86)90391-8. [DOI] [PubMed] [Google Scholar]
  20. Liu F. T., Zinnecker M., Hamaoka T., Katz D. H. New procedures for preparation and isolation of conjugates of proteins and a synthetic copolymer of D-amino acids and immunochemical characterization of such conjugates. Biochemistry. 1979 Feb 20;18(4):690–693. doi: 10.1021/bi00571a022. [DOI] [PubMed] [Google Scholar]
  21. Murray J. C., Stingl G., Kleinman H. K., Martin G. R., Katz S. I. Epidermal cells adhere preferentially to type IV (basement membrane) collagen. J Cell Biol. 1979 Jan;80(1):197–202. doi: 10.1083/jcb.80.1.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nader H. B., Dietrich C. P., Buonassisi V., Colburn P. Heparin sequences in the heparan sulfate chains of an endothelial cell proteoglycan. Proc Natl Acad Sci U S A. 1987 Jun;84(11):3565–3569. doi: 10.1073/pnas.84.11.3565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Oberbäumer I., Laurent M., Schwarz U., Sakurai Y., Yamada Y., Vogeli G., Voss T., Siebold B., Glanville R. W., Kühn K. Amino acid sequence of the non-collagenous globular domain (NC1) of the alpha 1(IV) chain of basement membrane collagen as derived from complementary DNA. Eur J Biochem. 1985 Mar 1;147(2):217–224. doi: 10.1111/j.1432-1033.1985.tb08739.x. [DOI] [PubMed] [Google Scholar]
  24. Orkin R. W., Gehron P., McGoodwin E. B., Martin G. R., Valentine T., Swarm R. A murine tumor producing a matrix of basement membrane. J Exp Med. 1977 Jan 1;145(1):204–220. doi: 10.1084/jem.145.1.204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pierschbacher M. D., Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature. 1984 May 3;309(5963):30–33. doi: 10.1038/309030a0. [DOI] [PubMed] [Google Scholar]
  26. Pihlajaniemi T., Tryggvason K., Myers J. C., Kurkinen M., Lebo R., Cheung M. C., Prockop D. J., Boyd C. D. cDNA clones coding for the pro-alpha1(IV) chain of human type IV procollagen reveal an unusual homology of amino acid sequences in two halves of the carboxyl-terminal domain. J Biol Chem. 1985 Jun 25;260(12):7681–7687. [PubMed] [Google Scholar]
  27. Schwarz-Magdolen U., Oberbäumer I., Kühn K. cDNA and protein sequence of the NC1 domain of the alpha 2-chain of collagen IV and its comparison with alpha 1(IV). FEBS Lett. 1986 Nov 24;208(2):203–207. doi: 10.1016/0014-5793(86)81018-3. [DOI] [PubMed] [Google Scholar]
  28. Tsilibary E. C., Charonis A. S., Reger L. A., Wohlhueter R. M., Furcht L. T. The effect of nonenzymatic glucosylation on the binding of the main noncollagenous NC1 domain to type IV collagen. J Biol Chem. 1988 Mar 25;263(9):4302–4308. [PubMed] [Google Scholar]
  29. Tsilibary E. C., Charonis A. S. The role of the main noncollagenous domain (NC1) in type IV collagen self-assembly. J Cell Biol. 1986 Dec;103(6 Pt 1):2467–2473. doi: 10.1083/jcb.103.6.2467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tsilibary E. C., Koliakos G. G., Charonis A. S., Vogel A. M., Reger L. A., Furcht L. T. Heparin type IV collagen interactions: equilibrium binding and inhibition of type IV collagen self-assembly. J Biol Chem. 1988 Dec 15;263(35):19112–19118. [PubMed] [Google Scholar]
  31. WADDELL W. J. A simple ultraviolet spectrophotometric method for the determination of protein. J Lab Clin Med. 1956 Aug;48(2):311–314. [PubMed] [Google Scholar]
  32. Wolf P. A critical reappraisal of Waddell's technique for ultraviolet spectrophotometric protein estimation. Anal Biochem. 1983 Feb 15;129(1):145–155. doi: 10.1016/0003-2697(83)90062-3. [DOI] [PubMed] [Google Scholar]
  33. Woods A., Couchman J. R. Focal adhesions and cell-matrix interactions. Coll Relat Res. 1988 Mar;8(2):155–182. doi: 10.1016/s0174-173x(88)80027-x. [DOI] [PubMed] [Google Scholar]
  34. Yurchenco P. D., Furthmayr H. Self-assembly of basement membrane collagen. Biochemistry. 1984 Apr 10;23(8):1839–1850. doi: 10.1021/bi00303a040. [DOI] [PubMed] [Google Scholar]
  35. Yurchenco P. D., Ruben G. C. Basement membrane structure in situ: evidence for lateral associations in the type IV collagen network. J Cell Biol. 1987 Dec;105(6 Pt 1):2559–2568. doi: 10.1083/jcb.105.6.2559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Yurchenco P. D., Ruben G. C. Type IV collagen lateral associations in the EHS tumor matrix. Comparison with amniotic and in vitro networks. Am J Pathol. 1988 Aug;132(2):278–291. [PMC free article] [PubMed] [Google Scholar]
  37. Yurchenco P. D., Tsilibary E. C., Charonis A. S., Furthmayr H. Models for the self-assembly of basement membrane. J Histochem Cytochem. 1986 Jan;34(1):93–102. doi: 10.1177/34.1.3510247. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES