Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1990 Oct 1;111(4):1505–1518. doi: 10.1083/jcb.111.4.1505

UV microbeam irradiations of the mitotic spindle. II. Spindle fiber dynamics and force production

PMCID: PMC2116244  PMID: 2211823

Abstract

Metaphase and anaphase spindles in cultured newt and PtK1 cells were irradiated with a UV microbeam (285 nM), creating areas of reduced birefringence (ARBs) in 3 s that selectively either severed a few fibers or cut across the half spindle. In either case, the birefringence at the polewards edge of the ARB rapidly faded polewards, while it remained fairly constant at the other, kinetochore edge. Shorter astral fibers, however, remained present in the enlarged ARB; presumably these had not been cut by the irradiation. After this enlargement of the ARB, metaphase spindles recovered rapidly as the detached pole moved back towards the chromosomes, reestablishing spindle fibers as the ARB closed; this happened when the ARB cut a few fibers or across the entire half spindle. We never detected elongation of the cut kinetochore fibers. Rather, astral fibers growing from the pole appeared to bridge and then close the ARB, just before the movement of the pole toward the chromosomes. When a second irradiation was directed into the closing ARB, the polewards movement again stopped before it restarted. In all metaphase cells, once the pole had reestablished connection with the chromosomes, the unirradiated half spindle then also shortened to create a smaller symmetrical spindle capable of normal anaphase later. Anaphase cells did not recover this way; the severed pole remained detached but the chromosomes continued a modified form of movement, clumping into a telophase-like group. The results are discussed in terms of controls operating on spindle microtubule stability and mechanisms of mitotic force generation.

Full Text

The Full Text of this article is available as a PDF (7.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen C., Borisy G. G. Structural polarity and directional growth of microtubules of Chlamydomonas flagella. J Mol Biol. 1974 Dec 5;90(2):381–402. doi: 10.1016/0022-2836(74)90381-7. [DOI] [PubMed] [Google Scholar]
  2. Cassimeris L., Pryer N. K., Salmon E. D. Real-time observations of microtubule dynamic instability in living cells. J Cell Biol. 1988 Dec;107(6 Pt 1):2223–2231. doi: 10.1083/jcb.107.6.2223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Czaban B. B., Forer A. The kinetic polarities of spindle microtubules in vivo, in crane-fly spermatocytes. I. Kinetochore microtubules that re-form after treatment with colcemid. J Cell Sci. 1985 Nov;79:1–37. doi: 10.1242/jcs.79.1.1. [DOI] [PubMed] [Google Scholar]
  4. Euteneuer U., McIntosh J. R. Polarity of midbody and phragmoplast microtubules. J Cell Biol. 1980 Nov;87(2 Pt 1):509–515. doi: 10.1083/jcb.87.2.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Euteneuer U., McIntosh J. R. Structural polarity of kinetochore microtubules in PtK1 cells. J Cell Biol. 1981 May;89(2):338–345. doi: 10.1083/jcb.89.2.338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. FORER A. LOCAL REDUCTION OF SPINDLE FIBER BIREFRINGENCE IN LIVING NEPHROTOMA SUTURALIS (LOEW) SPERMATOCYTES INDUCED BY ULTRAVIOLET MICROBEAM IRRADIATION. J Cell Biol. 1965 Apr;25:SUPPL–SUPPL117. doi: 10.1083/jcb.25.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Forer A. Characterization of the mitotic traction system, and evidence that birefringent spindle fibers neither produce nor transmit force for chromosome movement. Chromosoma. 1966;19(1):44–98. doi: 10.1007/BF00332793. [DOI] [PubMed] [Google Scholar]
  8. Forer A. Do anaphase chromosomes chew their way to the pole or are they pulled by actin? J Cell Sci. 1988 Dec;91(Pt 4):449–453. doi: 10.1242/jcs.91.4.449. [DOI] [PubMed] [Google Scholar]
  9. Gorbsky G. J., Borisy G. G. Microtubules of the kinetochore fiber turn over in metaphase but not in anaphase. J Cell Biol. 1989 Aug;109(2):653–662. doi: 10.1083/jcb.109.2.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gorbsky G. J., Sammak P. J., Borisy G. G. Chromosomes move poleward in anaphase along stationary microtubules that coordinately disassemble from their kinetochore ends. J Cell Biol. 1987 Jan;104(1):9–18. doi: 10.1083/jcb.104.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hays T. S., Wise D., Salmon E. D. Traction force on a kinetochore at metaphase acts as a linear function of kinetochore fiber length. J Cell Biol. 1982 May;93(2):374–389. doi: 10.1083/jcb.93.2.374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hill T. L., Chen Y. Phase changes at the end of a microtubule with a GTP cap. Proc Natl Acad Sci U S A. 1984 Sep;81(18):5772–5776. doi: 10.1073/pnas.81.18.5772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hill T. L. Introductory analysis of the GTP-cap phase-change kinetics at the end of a microtubule. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6728–6732. doi: 10.1073/pnas.81.21.6728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hill T. L., Kirschner M. W. Bioenergetics and kinetics of microtubule and actin filament assembly-disassembly. Int Rev Cytol. 1982;78:1–125. [PubMed] [Google Scholar]
  15. Hughes K., Forer A., Wilson P., Leggiadro C. Ultraviolet microbeam irradiation of microtubules in vitro. The action spectrum for local depolymerization of marginal band microtubules in vitro matches that for reducing birefringence of chromosomal spindle fibres in vivo. J Cell Sci. 1988 Dec;91(Pt 4):469–478. doi: 10.1242/jcs.91.4.469. [DOI] [PubMed] [Google Scholar]
  16. Kirschner M. W., Mitchison T. Microtubule dynamics. Nature. 1986 Dec 18;324(6098):621–621. doi: 10.1038/324621a0. [DOI] [PubMed] [Google Scholar]
  17. Langford G. M., Inoué S. Motility of the microtubular axostyle in Pyrsonympha. J Cell Biol. 1979 Mar;80(3):521–538. doi: 10.1083/jcb.80.3.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Leslie R. J., Pickett-Heaps J. D. Spindle microtubule dynamics following ultraviolet-microbeam irradiations of mitotic diatoms. Cell. 1984 Mar;36(3):717–727. doi: 10.1016/0092-8674(84)90352-0. [DOI] [PubMed] [Google Scholar]
  19. Leslie R. J., Pickett-Heaps J. D. Ultraviolet microbeam irradiations of mitotic diatoms: investigation of spindle elongation. J Cell Biol. 1983 Feb;96(2):548–561. doi: 10.1083/jcb.96.2.548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mitchison T. J. Polewards microtubule flux in the mitotic spindle: evidence from photoactivation of fluorescence. J Cell Biol. 1989 Aug;109(2):637–652. doi: 10.1083/jcb.109.2.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mitchison T., Evans L., Schulze E., Kirschner M. Sites of microtubule assembly and disassembly in the mitotic spindle. Cell. 1986 May 23;45(4):515–527. doi: 10.1016/0092-8674(86)90283-7. [DOI] [PubMed] [Google Scholar]
  22. Mitchison T., Kirschner M. Dynamic instability of microtubule growth. Nature. 1984 Nov 15;312(5991):237–242. doi: 10.1038/312237a0. [DOI] [PubMed] [Google Scholar]
  23. Nicklas R. B. Measurements of the force produced by the mitotic spindle in anaphase. J Cell Biol. 1983 Aug;97(2):542–548. doi: 10.1083/jcb.97.2.542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. OSTERGREN G., MOLE-BAJER J., BAJER A. An interpretation of transport phenomena at mitosis. Ann N Y Acad Sci. 1960 Oct 7;90:381–408. doi: 10.1111/j.1749-6632.1960.tb23258.x. [DOI] [PubMed] [Google Scholar]
  25. Pickett-Heaps J. D., Tippit D. H., Cohn S. A., Spurck T. P. Microtubule dynamics in the spindle. Theoretical aspects of assembly/disassembly reactions in vivo. J Theor Biol. 1986 Jan 21;118(2):153–169. doi: 10.1016/s0022-5193(86)80131-x. [DOI] [PubMed] [Google Scholar]
  26. Pickett-Heaps J. D., Tippit D. H., Porter K. R. Rethinking mitosis. Cell. 1982 Jul;29(3):729–744. doi: 10.1016/0092-8674(82)90435-4. [DOI] [PubMed] [Google Scholar]
  27. Pickett-Heaps J., Spurck T., Tippit D. Chromosome motion and the spindle matrix. J Cell Biol. 1984 Jul;99(1 Pt 2):137s–143s. doi: 10.1083/jcb.99.1.137s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rieder C. L., Davison E. A., Jensen L. C., Cassimeris L., Salmon E. D. Oscillatory movements of monooriented chromosomes and their position relative to the spindle pole result from the ejection properties of the aster and half-spindle. J Cell Biol. 1986 Aug;103(2):581–591. doi: 10.1083/jcb.103.2.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schulze E., Kirschner M. New features of microtubule behaviour observed in vivo. Nature. 1988 Jul 28;334(6180):356–359. doi: 10.1038/334356a0. [DOI] [PubMed] [Google Scholar]
  30. Sillers P. J., Forer A. Action spectrum for changes in spindle fibre birefringence after ultraviolet microbeam irradiations of single chromosomal spindle fibres in crane-fly spermatocytes. J Cell Sci. 1983 Jul;62:1–25. doi: 10.1242/jcs.62.1.1. [DOI] [PubMed] [Google Scholar]
  31. Sillers P. J., Forer A. Analysis of chromosome movement in crane fly spermatocytes by ultraviolet microbeam irradiation of individual chromosomal spindle fibres. II. Action spectra for stopping chromosome movement and for blocking ciliary beating and myofibril contractions. Can J Biochem. 1981 Sep;59(9):777–792. doi: 10.1139/o81-108. [DOI] [PubMed] [Google Scholar]
  32. Snyder J. A., Golub R. J., Berg S. P. Role of non-kinetochore microtubules in spindle elongation in mitotic PtK1 cells. Eur J Cell Biol. 1986 Jan;39(2):373–379. [PubMed] [Google Scholar]
  33. Snyder J. A., Hamilton B. T., Mullins J. M. Loss of mitotic centrosomal microtubule initiation capacity at the metaphase-anaphase transition. Eur J Cell Biol. 1982 Jun;27(2):191–199. [PubMed] [Google Scholar]
  34. Soranno T., Pickett-Heaps J. Directionally controlled spindle disassembly after mitosis in the diatom Pinnularia. Eur J Cell Biol. 1982 Feb;26(2):234–243. [PubMed] [Google Scholar]
  35. Steffen W., Fuge H., Dietz R., Bastmeyer M., Müller G. Aster-free spindle poles in insect spermatocytes: evidence for chromosome-induced spindle formation? J Cell Biol. 1986 May;102(5):1679–1687. doi: 10.1083/jcb.102.5.1679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Summers K., Kirschner M. W. Characteristics of the polar assembly and disassembly of microtubules observed in vitro by darkfield light microscopy. J Cell Biol. 1979 Oct;83(1):205–217. doi: 10.1083/jcb.83.1.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tao W., Walter R. J., Berns M. W. Laser-transected microtubules exhibit individuality of regrowth, however most free new ends of the microtubules are stable. J Cell Biol. 1988 Sep;107(3):1025–1035. doi: 10.1083/jcb.107.3.1025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Telzer B. R., Haimo L. T. Decoration of spindle microtubules with Dynein: evidence for uniform polarity. J Cell Biol. 1981 May;89(2):373–378. doi: 10.1083/jcb.89.2.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Tippit D. H., Pickett-Heaps J. D., Leslie R. Cell division in two large pennate diatoms Hantzschia and Nitzschia III. A new proposal for kinetochore function during prometaphase. J Cell Biol. 1980 Aug;86(2):402–416. doi: 10.1083/jcb.86.2.402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Walker R. A., Inoué S., Salmon E. D. Asymmetric behavior of severed microtubule ends after ultraviolet-microbeam irradiation of individual microtubules in vitro. J Cell Biol. 1989 Mar;108(3):931–937. doi: 10.1083/jcb.108.3.931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wilson P. J., Forer A. Ultraviolet microbeam irradiation of chromosomal spindle fibres shears microtubules and permits study of the new free ends in vivo. J Cell Sci. 1988 Dec;91(Pt 4):455–468. doi: 10.1242/jcs.91.4.455. [DOI] [PubMed] [Google Scholar]
  42. Wise D. On the mechanism of prometaphase congression: chromosome velocity as a function of position on the spindle. Chromosoma. 1978 Nov 22;69(2):231–241. doi: 10.1007/BF00329921. [DOI] [PubMed] [Google Scholar]
  43. ZIRKLE R. E., URETZ R. B., HAYNES R. H. Disappearance of spindles and pharagmoplasts after microbeam irradiation of cytoplasm. Ann N Y Acad Sci. 1960 Oct 7;90:435–439. doi: 10.1111/j.1749-6632.1960.tb23262.x. [DOI] [PubMed] [Google Scholar]
  44. Zirkle R. E. Ultraviolet-microbeam irradiation of newt-cell cytoplasm: spindle destruction, false anaphase, and delay of true anaphase. Radiat Res. 1970 Mar;41(3):516–537. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES