Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1990 Oct 1;111(4):1605–1616. doi: 10.1083/jcb.111.4.1605

Cell body and flagellar agglutinins in Chlamydomonas reinhardtii: the cell body plasma membrane is a reservoir for agglutinins whose migration to the flagella is regulated by a functional barrier

PMCID: PMC2116248  PMID: 2170424

Abstract

Fertilization in Chlamydomonas reinhardtii is initiated when gametes of opposite mating types adhere to each other via adhesion molecules (agglutinins) on their flagella. Adhesion leads to loss of active agglutinins from the flagella and recruitment of new agglutinins from a pool associated with the cell body. We have been interested in determining the precise cellular location of the pool and learning more about the relationship between agglutinins in the two domains. In the studies reported here we describe methods for purification of mt+ cell body agglutinins by use of ammonium sulfate precipitation, chromatography (molecular sieve, ion exchange, and hydrophobic interaction), and sucrose gradient centrifugation. About 90% of the total agglutinins were associated with the cell body and the remainder were on the flagella. Cell body agglutinins were indistinguishable from mt+ flagellar agglutinins by SDS-PAGE, elution properties on a hydrophobic interaction column, and in sedimentation properties on sucrose gradients. The nonadhesiveness of cell bodies suggested that the cell body agglutinins would be intracellular, but our results are not consistent with this interpretation. We have demonstrated that brief trypsin treatment of deflagellated gametes destroyed all of the cell body agglutinins and, in addition, we showed that the cell body agglutinins were accessible to surface iodination. These results indicated that C. reinhardtii agglutinins have a novel cellular disposition: active agglutinins, representing approximately 10% of the total cellular agglutinins, are found only on the flagella, whereas the remaining 90% of these molecules are on the external surface of the cell body plasma membrane in a nonfunctional form. This segregation of cell adhesion molecules into distinct membrane domains before gametic interactions has been demonstrated in sperm of multicellular organisms and may be a common mechanism for sequestering these critical molecules until gametes are activated for fusion. In experiments in which surface- iodinated cell bodies were permitted to regenerate new flagella, we found that the agglutinins (as well as the 350,000 Mr, major flagellar membrane protein) on the newly regenerated flagella were iodinated. These results indicate that proteins destined for the flagella can reside on the external surface of the cell body plasma membrane and are recruited onto newly forming flagella as well as onto preexisting flagella during fertilization.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adair W. S. Characterization of Chlamydomonas sexual agglutinins. J Cell Sci Suppl. 1985;2:233–260. doi: 10.1242/jcs.1985.supplement_2.13. [DOI] [PubMed] [Google Scholar]
  2. Adair W. S., Monk B. C., Cohen R., Hwang C., Goodenough U. W. Sexual agglutinins from the Chlamydomonas flagellar membrane. Partial purification and characterization. J Biol Chem. 1982 Apr 25;257(8):4593–4602. [PubMed] [Google Scholar]
  3. Bloodgood R. A. Dynamic properties of the flagellar surface. Symp Soc Exp Biol. 1982;35:353–380. [PubMed] [Google Scholar]
  4. Bloodgood R. A. Gliding motility and the dynamics of flagellar membrane glycoproteins in Chlamydomonas reinhardtii. J Protozool. 1988 Nov;35(4):552–558. doi: 10.1111/j.1550-7408.1988.tb04151.x. [DOI] [PubMed] [Google Scholar]
  5. Bloodgood R. A. Motility occurring in association with the surface of the Chlamydomonas flagellum. J Cell Biol. 1977 Dec;75(3):983–989. doi: 10.1083/jcb.75.3.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bloom G. S., Luca F. C., Vallee R. B. Microtubule-associated protein 1B: identification of a major component of the neuronal cytoskeleton. Proc Natl Acad Sci U S A. 1985 Aug;82(16):5404–5408. doi: 10.1073/pnas.82.16.5404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bouck G. B. The structure, origin, isolation, and composition of the tubular mastigonemes of the Ochromas flagellum. J Cell Biol. 1971 Aug;50(2):362–384. doi: 10.1083/jcb.50.2.362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Buchanan M. J., Imam S. H., Eskue W. A., Snell W. J. Activation of the cell wall degrading protease, lysin, during sexual signalling in Chlamydomonas: the enzyme is stored as an inactive, higher relative molecular mass precursor in the periplasm. J Cell Biol. 1989 Jan;108(1):199–207. doi: 10.1083/jcb.108.1.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cowan A. E., Myles D. G., Koppel D. E. Lateral diffusion of the PH-20 protein on guinea pig sperm: evidence that barriers to diffusion maintain plasma membrane domains in mammalian sperm. J Cell Biol. 1987 Apr;104(4):917–923. doi: 10.1083/jcb.104.4.917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cowan A. E., Primakoff P., Myles D. G. Sperm exocytosis increases the amount of PH-20 antigen on the surface of guinea pig sperm. J Cell Biol. 1986 Oct;103(4):1289–1297. doi: 10.1083/jcb.103.4.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Detmers P. A., Goodenough U. W., Condeelis J. Elongation of the fertilization tubule in Chlamydomonas: new observations on the core microfilaments and the effect of transient intracellular signals on their structural integrity. J Cell Biol. 1983 Aug;97(2):522–532. doi: 10.1083/jcb.97.2.522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dubray G., Bezard G. A highly sensitive periodic acid-silver stain for 1,2-diol groups of glycoproteins and polysaccharides in polyacrylamide gels. Anal Biochem. 1982 Jan 15;119(2):325–329. doi: 10.1016/0003-2697(82)90593-0. [DOI] [PubMed] [Google Scholar]
  13. Endo Y., Lee M. A., Kopf G. S. Characterization of an islet-activating protein-sensitive site in mouse sperm that is involved in the zona pellucida-induced acrosome reaction. Dev Biol. 1988 Sep;129(1):12–24. doi: 10.1016/0012-1606(88)90157-1. [DOI] [PubMed] [Google Scholar]
  14. Florman H. M., Storey B. T. Mouse gamete interactions: the zona pellucida is the site of the acrosome reaction leading to fertilization in vitro. Dev Biol. 1982 May;91(1):121–130. doi: 10.1016/0012-1606(82)90015-x. [DOI] [PubMed] [Google Scholar]
  15. Friedmann I., Colwin A. L., Colwin L. H. Fine-structural aspects of fertilization in Chlamydomonas reinhardi. J Cell Sci. 1968 Mar;3(1):115–128. doi: 10.1242/jcs.3.1.115. [DOI] [PubMed] [Google Scholar]
  16. Friend D. S. Sperm maturation: membrane domain boundaries. Ann N Y Acad Sci. 1989;567:208–221. doi: 10.1111/j.1749-6632.1989.tb16472.x. [DOI] [PubMed] [Google Scholar]
  17. Geetha-Habib M., Bouck G. B. Synthesis and mobilization of flagellar glycoproteins during regeneration in Euglena. J Cell Biol. 1982 May;93(2):432–441. doi: 10.1083/jcb.93.2.432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gilula N. B., Satir P. The ciliary necklace. A ciliary membrane specialization. J Cell Biol. 1972 May;53(2):494–509. doi: 10.1083/jcb.53.2.494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Goodenough U. W., Adair W. S., Collin-Osdoby P., Heuser J. E. Structure of the Chlamydomonas agglutinin and related flagellar surface proteins in vitro and in situ. J Cell Biol. 1985 Sep;101(3):924–941. doi: 10.1083/jcb.101.3.924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Goodenough U. W. Cyclic AMP enhances the sexual agglutinability of Chlamydomonas flagella. J Cell Biol. 1989 Jul;109(1):247–252. doi: 10.1083/jcb.109.1.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hoffman S., Edelman G. M. Kinetics of homophilic binding by embryonic and adult forms of the neural cell adhesion molecule. Proc Natl Acad Sci U S A. 1983 Sep;80(18):5762–5766. doi: 10.1073/pnas.80.18.5762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hughes R. C., Pena S. D., Clark J., Dourmashkin R. R. Molecular requirements for adhesion and spreading of hamster fibroblasts. Exp Cell Res. 1979 Jul;121(2):307–314. doi: 10.1016/0014-4827(79)90009-0. [DOI] [PubMed] [Google Scholar]
  23. KATES J. R., JONES R. F. THE CONTROL OF GAMETIC DIFFERENTIATION IN LIQUID CULTURES OF CHLAMYDOMONAS. J Cell Physiol. 1964 Apr;63:157–164. doi: 10.1002/jcp.1030630204. [DOI] [PubMed] [Google Scholar]
  24. Kooijman R., de Wildt P., Homan W. L., Musgrave A., van den Ende H. Light Affects Flagellar Agglutinability in Chlamydomonas eugametos by Modification of the Agglutinin Molecules. Plant Physiol. 1988 Jan;86(1):216–223. doi: 10.1104/pp.86.1.216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kopf G. S., Woolkalis M. J., Gerton G. L. Evidence for a guanine nucleotide-binding regulatory protein in invertebrate and mammalian sperm. Identification by islet-activating protein-catalyzed ADP-ribosylation and immunochemical methods. J Biol Chem. 1986 Jun 5;261(16):7327–7331. [PubMed] [Google Scholar]
  26. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  27. Lopez L. C., Shur B. D. Redistribution of mouse sperm surface galactosyltransferase after the acrosome reaction. J Cell Biol. 1987 Oct;105(4):1663–1670. doi: 10.1083/jcb.105.4.1663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Marchalonis J. J. An enzymic method for the trace iodination of immunoglobulins and other proteins. Biochem J. 1969 Jun;113(2):299–305. doi: 10.1042/bj1130299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. McLean R. J., Brown R. M. Cell surface differentiation of Chlamydomonas during gametogenesis. I. Mating and concanavalin A agglutinability. Dev Biol. 1974 Feb;36(2):279–285. doi: 10.1016/0012-1606(74)90051-7. [DOI] [PubMed] [Google Scholar]
  30. Merril C. R., Goldman D., Sedman S. A., Ebert M. H. Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science. 1981 Mar 27;211(4489):1437–1438. doi: 10.1126/science.6162199. [DOI] [PubMed] [Google Scholar]
  31. Myles D. G., Primakoff P. Localized surface antigens of guinea pig sperm migrate to new regions prior to fertilization. J Cell Biol. 1984 Nov;99(5):1634–1641. doi: 10.1083/jcb.99.5.1634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pasquale S. M., Goodenough U. W. Cyclic AMP functions as a primary sexual signal in gametes of Chlamydomonas reinhardtii. J Cell Biol. 1987 Nov;105(5):2279–2292. doi: 10.1083/jcb.105.5.2279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Phelps B. M., Primakoff P., Koppel D. E., Low M. G., Myles D. G. Restricted lateral diffusion of PH-20, a PI-anchored sperm membrane protein. Science. 1988 Jun 24;240(4860):1780–1782. doi: 10.1126/science.3381102. [DOI] [PubMed] [Google Scholar]
  34. Primakoff P., Hyatt H., Myles D. G. A role for the migrating sperm surface antigen PH-20 in guinea pig sperm binding to the egg zona pellucida. J Cell Biol. 1985 Dec;101(6):2239–2244. doi: 10.1083/jcb.101.6.2239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Primakoff P., Hyatt H., Tredick-Kline J. Identification and purification of a sperm surface protein with a potential role in sperm-egg membrane fusion. J Cell Biol. 1987 Jan;104(1):141–149. doi: 10.1083/jcb.104.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Rogalski A. A., Bouck G. B. Flagellar surface antigens in Euglena: immunological evidence for an external glycoprotein pool and its transfer to the regenerating flagellum. J Cell Biol. 1982 Jun;93(3):758–766. doi: 10.1083/jcb.93.3.758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rosenbaum J. L., Moulder J. E., Ringo D. L. Flagellar elongation and shortening in Chlamydomonas. The use of cycloheximide and colchicine to study the synthesis and assembly of flagellar proteins. J Cell Biol. 1969 May;41(2):600–619. doi: 10.1083/jcb.41.2.600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. SAGER R., GRANICK S. Nutritional control of sexuality in Chlamydomonas reinhardi. J Gen Physiol. 1954 Jul 20;37(6):729–742. doi: 10.1085/jgp.37.6.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Saling P. M., Storey B. T. Mouse gamete interactions during fertilization in vitro. Chlortetracycline as a fluorescent probe for the mouse sperm acrosome reaction. J Cell Biol. 1979 Dec;83(3):544–555. doi: 10.1083/jcb.83.3.544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Snell W. J., Eskue W. A., Buchanan M. J. Regulated secretion of a serine protease that activates an extracellular matrix-degrading metalloprotease during fertilization in Chlamydomonas. J Cell Biol. 1989 Oct;109(4 Pt 1):1689–1694. doi: 10.1083/jcb.109.4.1689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Snell W. J., Kosfiszer M. G., Clausell A., Perillo N., Imam S., Hunnicutt G. A monoclonal antibody that blocks adhesion of Chlamydomonas mt+ gametes. J Cell Biol. 1986 Dec;103(6 Pt 1):2449–2456. doi: 10.1083/jcb.103.6.2449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Snell W. J. Mating in Chlamydomonas: a system for the study of specific cell adhesion. I. Ultrastructural and electrophoretic analyses of flagellar surface components involved in adhesion. J Cell Biol. 1976 Jan;68(1):48–69. doi: 10.1083/jcb.68.1.48. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Snell W. J. Mating in Chlamydomonas: a system for the study of specific cell adhesion. II. A radioactive flagella-binding assay for quantitation of adhesion. J Cell Biol. 1976 Jan;68(1):70–79. doi: 10.1083/jcb.68.1.70. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Snell W. J., Moore W. S. Aggregation-dependent turnover of flagellar adhesion molecules in Chlamydomonas gametes. J Cell Biol. 1980 Jan;84(1):203–210. doi: 10.1083/jcb.84.1.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Snell W. J., Roseman S. Kinetics of adhesion and de-adhesion of Chlamydomonas gametes. J Biol Chem. 1979 Nov 10;254(21):10820–10829. [PubMed] [Google Scholar]
  46. Snell W. J. Study of the release of cell wall degrading enzymes during adhesion of Chlamydomonas gametes. Exp Cell Res. 1982 Mar;138(1):109–119. doi: 10.1016/0014-4827(82)90096-9. [DOI] [PubMed] [Google Scholar]
  47. Solter K. M., Gibor A. Removal and recovery of mating receptors on flagella of Chlamydomonas reinhardi. Exp Cell Res. 1978 Aug;115(1):175–181. doi: 10.1016/0014-4827(78)90414-7. [DOI] [PubMed] [Google Scholar]
  48. Wassarman P. M. Early events in mammalian fertilization. Annu Rev Cell Biol. 1987;3:109–142. doi: 10.1146/annurev.cb.03.110187.000545. [DOI] [PubMed] [Google Scholar]
  49. Weigel P. H., Schnaar R. L., Kuhlenschmidt M. S., Schmell E., Lee R. T., Lee Y. C., Roseman S. Adhesion of hepatocytes to immobilized sugars. A threshold phenomenon. J Biol Chem. 1979 Nov 10;254(21):10830–10838. [PubMed] [Google Scholar]
  50. Weiss R. L., Goodenough D. A., Goodenough U. W. Membrane particle arrays associated with the basal body and with contractile vacuole secretion in Chlamydomonas. J Cell Biol. 1977 Jan;72(1):133–143. doi: 10.1083/jcb.72.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Witman G. B., Carlson K., Berliner J., Rosenbaum J. L. Chlamydomonas flagella. I. Isolation and electrophoretic analysis of microtubules, matrix, membranes, and mastigonemes. J Cell Biol. 1972 Sep;54(3):507–539. doi: 10.1083/jcb.54.3.507. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES