Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1990 Oct 1;111(4):1373–1381. doi: 10.1083/jcb.111.4.1373

Induction and mitochondrial localization of cytochrome P450scc system enzymes in normal and transformed ovarian granulosa cells

PMCID: PMC2116250  PMID: 2170421

Abstract

After ovulation of an oocyte, granulosa cells of the ovarian follicle differentiate into luteal cells and become a major factor dedicated to the synthesis of the steroid hormone progesterone. We recently established granulosa cell lines by cotransfection of granulosa cells with SV-40 and Ha-ras oncogene. In these cells progesterone secretion can be induced by cAMP as in normal rat granulosa cells. The induction of progesterone secretion is observed only after approximately 24 h and closely follows the delayed but quantitatively dramatic induction of the mitochondrial cytochrome P450scc which catalyzes the first step in steroid hormone biosynthesis. The mitochondrial P450 system electron transport proteins, adrenodoxin and adrenodoxin reductase, are also induced but adrenodoxin shows a faster induction. Immunofluorescence studies show that the three enzymes are induced in all cells and incorporated into all mitochondria uniformly. Electron microscopic examination using immunogold technique further confirms this and reveals that adrenodoxin is predominantly located on the matrix side of the inner mitochondrial membrane. Thus, adrenodoxin, which is a small highly charged protein, shows a distribution similar to P450scc which is an integral membrane protein. The uniformity of the response of the cells provides further evidence for the homogeneity of the cell line and makes this new granulosa cell line a highly promising system for the study of the molecular mechanisms involved in changes in gene expression during the process of granulosa cell differentiation.

Full Text

The Full Text of this article is available as a PDF (3.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amsterdam A., Koch Y., Lieberman M. E., Lindner H. R. Distribution of binding sites for human chorionic gonadotropin in the preovulatory follicle of the rat. J Cell Biol. 1975 Dec;67(3):894–900. doi: 10.1083/jcb.67.3.894. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amsterdam A., Rotmensch S., Ben-Ze'ev A. Coordinated regulation of morphological and biochemical differentiation in a steroidogenic cell: the granulosa cell model. Trends Biochem Sci. 1989 Sep;14(9):377–382. doi: 10.1016/0968-0004(89)90012-1. [DOI] [PubMed] [Google Scholar]
  3. Amsterdam A., Rotmensch S. Structure-function relationships during granulosa cell differentiation. Endocr Rev. 1987 Aug;8(3):309–337. doi: 10.1210/edrv-8-3-309. [DOI] [PubMed] [Google Scholar]
  4. Amsterdam A., Zauberman A., Meir G., Pinhasi-Kimhi O., Suh B. S., Oren M. Cotransfection of granulosa cells with simian virus 40 and Ha-RAS oncogene generates stable lines capable of induced steroidogenesis. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7582–7586. doi: 10.1073/pnas.85.20.7582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ben-Ze'ev A., Kohen F., Amsterdam A. Gonadotropin-induced differentiation of granulosa cells is associated with the co-ordinated regulation of cytoskeletal proteins involved in cell-contact formation. Differentiation. 1987;34(3):222–235. doi: 10.1111/j.1432-0436.1987.tb00070.x. [DOI] [PubMed] [Google Scholar]
  6. Churchill P. F., deAlvare L. R., Kimura T. Topological studies of the steroid hydroxylase complexes in bovine adrenocortical mitochondria. J Biol Chem. 1978 Jul 25;253(14):4924–4929. [PubMed] [Google Scholar]
  7. Farkash Y., Timberg R., Orly J. Preparation of antiserum to rat cytochrome P-450 cholesterol side chain cleavage, and its use for ultrastructural localization of the immunoreactive enzyme by protein A-gold technique. Endocrinology. 1986 Apr;118(4):1353–1365. doi: 10.1210/endo-118-4-1353. [DOI] [PubMed] [Google Scholar]
  8. Funkenstein B., Waterman M. R., Simpson E. R. Induction of synthesis of cholesterol side chain cleavage cytochrome P-450 and adrenodoxin by follicle-stimulating hormone, 8-bromo-cyclic AMP, and low density lipoprotein in cultured bovine granulosa cells. J Biol Chem. 1984 Jul 10;259(13):8572–8577. [PubMed] [Google Scholar]
  9. Geuze H. J., Slot J. W., Yanagibashi K., McCracken J. A., Schwartz A. L., Hall P. F. Immunogold cytochemistry of cytochromes P-450 in porcine adrenal cortex. Two enzymes (side-chain cleavage and 11 beta-hydroxylase) are co-localized in the same mitochondria. Histochemistry. 1987;86(6):551–557. doi: 10.1007/BF00489546. [DOI] [PubMed] [Google Scholar]
  10. Goldring N. B., Durica J. M., Lifka J., Hedin L., Ratoosh S. L., Miller W. L., Orly J., Richards J. S. Cholesterol side-chain cleavage P450 messenger ribonucleic acid: evidence for hormonal regulation in rat ovarian follicles and constitutive expression in corpora lutea. Endocrinology. 1987 May;120(5):1942–1950. doi: 10.1210/endo-120-5-1942. [DOI] [PubMed] [Google Scholar]
  11. Goldring N. B., Farkash Y., Goldschmit D., Orly J. Immunofluorescent probing of the mitochondrial cholesterol side-chain cleavage cytochrome P-450 expressed in differentiating granulosa cells in culture. Endocrinology. 1986 Dec;119(6):2821–2832. doi: 10.1210/endo-119-6-2821. [DOI] [PubMed] [Google Scholar]
  12. Goldschmit D., Kraicer P., Orly J. Periovulatory expression of cholesterol side-chain cleavage cytochrome P-450 in cumulus cells. Endocrinology. 1989 Jan;124(1):369–378. doi: 10.1210/endo-124-1-369. [DOI] [PubMed] [Google Scholar]
  13. Golos T. G., Miller W. L., Strauss J. F., 3rd Human chorionic gonadotropin and 8-bromo cyclic adenosine monophosphate promote an acute increase in cytochrome P450scc and adrenodoxin messenger RNAs in cultured human granulosa cells by a cycloheximide-insensitive mechanism. J Clin Invest. 1987 Sep;80(3):896–899. doi: 10.1172/JCI113149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Griffiths G., McDowall A., Back R., Dubochet J. On the preparation of cryosections for immunocytochemistry. J Ultrastruct Res. 1984 Oct;89(1):65–78. doi: 10.1016/s0022-5320(84)80024-6. [DOI] [PubMed] [Google Scholar]
  15. Hanukoglu I. Elimination of non-specific binding in western blots from non-reducing gels. J Biochem Biophys Methods. 1990 Jun;21(1):65–68. doi: 10.1016/0165-022x(90)90046-f. [DOI] [PubMed] [Google Scholar]
  16. Hanukoglu I., Gutfinger T., Haniu M., Shively J. E. Isolation of a cDNA for adrenodoxin reductase (ferredoxin-NADP+ reductase). Implications for mitochondrial cytochrome P-450 systems. Eur J Biochem. 1987 Dec 15;169(3):449–455. doi: 10.1111/j.1432-1033.1987.tb13632.x. [DOI] [PubMed] [Google Scholar]
  17. Hanukoglu I., Hanukoglu Z. Stoichiometry of mitochondrial cytochromes P-450, adrenodoxin and adrenodoxin reductase in adrenal cortex and corpus luteum. Implications for membrane organization and gene regulation. Eur J Biochem. 1986 May 15;157(1):27–31. doi: 10.1111/j.1432-1033.1986.tb09633.x. [DOI] [PubMed] [Google Scholar]
  18. Hanukoglu I., Privalle C. T., Jefcoate C. R. Mechanisms of ionic activation of adrenal mitochondrial cytochromes P-450scc and P-45011 beta. J Biol Chem. 1981 May 10;256(9):4329–4335. doi: 10.1016/S0021-9258(19)69437-8. [DOI] [PubMed] [Google Scholar]
  19. Hanukoglu I., Spitsberg V., Bumpus J. A., Dus K. M., Jefcoate C. R. Adrenal mitochondrial cytochrome P-450scc. Cholesterol and adrenodoxin interactions at equilibrium and during turnover. J Biol Chem. 1981 May 10;256(9):4321–4328. doi: 10.1016/S0021-9258(19)69436-6. [DOI] [PubMed] [Google Scholar]
  20. Hedin L., Rodgers R. J., Simpson E. R., Richards J. S. Changes in content of cytochrome P450(17)alpha, cytochrome P450scc, and 3-hydroxy-3-methylglutaryl CoA reductase in developing rat ovarian follicles and corpora lutea: correlation with theca cell steroidogenesis. Biol Reprod. 1987 Aug;37(1):211–223. doi: 10.1095/biolreprod37.1.211. [DOI] [PubMed] [Google Scholar]
  21. Hsueh A. J., Adashi E. Y., Jones P. B., Welsh T. H., Jr Hormonal regulation of the differentiation of cultured ovarian granulosa cells. Endocr Rev. 1984 Winter;5(1):76–127. doi: 10.1210/edrv-5-1-76. [DOI] [PubMed] [Google Scholar]
  22. Lambeth J. D., Stevens V. L. Cytochrome P-450scc: enzymology, and the regulation of intramitochondrial cholesterol delivery to the enzyme. Endocr Res. 1984;10(3-4):283–309. doi: 10.1080/07435808409036502. [DOI] [PubMed] [Google Scholar]
  23. Loosfelt H., Misrahi M., Atger M., Salesse R., Vu Hai-Luu Thi M. T., Jolivet A., Guiochon-Mantel A., Sar S., Jallal B., Garnier J. Cloning and sequencing of porcine LH-hCG receptor cDNA: variants lacking transmembrane domain. Science. 1989 Aug 4;245(4917):525–528. doi: 10.1126/science.2502844. [DOI] [PubMed] [Google Scholar]
  24. McFarland K. C., Sprengel R., Phillips H. S., Köhler M., Rosemblit N., Nikolics K., Segaloff D. L., Seeburg P. H. Lutropin-choriogonadotropin receptor: an unusual member of the G protein-coupled receptor family. Science. 1989 Aug 4;245(4917):494–499. doi: 10.1126/science.2502842. [DOI] [PubMed] [Google Scholar]
  25. Miller W. L. Molecular biology of steroid hormone synthesis. Endocr Rev. 1988 Aug;9(3):295–318. doi: 10.1210/edrv-9-3-295. [DOI] [PubMed] [Google Scholar]
  26. Mitani F., Ishimura Y., Izumi S., Watanabe K. Immunohistochemical localization of adrenodoxin and adrenodoxin reductase in bovine adrenal cortex. Acta Endocrinol (Copenh) 1979 Feb;90(2):317–327. doi: 10.1530/acta.0.0900317. [DOI] [PubMed] [Google Scholar]
  27. Mitani F., Shimizu T., Ueno R., Ishimura Y., Izumi S., Komatsu N., Watanabe K. Cytochrome P-45011 beta and P-450scc in adrenal cortex: zonal distribution and intramitochondrial localization by the horseradish peroxidase-labeled antibody method. J Histochem Cytochem. 1982 Oct;30(10):1066–1074. doi: 10.1177/30.10.6813370. [DOI] [PubMed] [Google Scholar]
  28. Rice D. A., Aitken L. D., Vandenbark G. R., Mouw A. R., Franklin A., Schimmer B. P., Parker K. L. A cAMP-responsive element regulates expression of the mouse steroid 11 beta-hydroxylase gene. J Biol Chem. 1989 Aug 25;264(24):14011–14015. [PubMed] [Google Scholar]
  29. Richards J. S., Hedin L. Molecular aspects of hormone action in ovarian follicular development, ovulation, and luteinization. Annu Rev Physiol. 1988;50:441–463. doi: 10.1146/annurev.ph.50.030188.002301. [DOI] [PubMed] [Google Scholar]
  30. Rodgers R. J., Waterman M. R., Simpson E. R. Cytochromes P-450scc, P-450(17)alpha, adrenodoxin, and reduced nicotinamide adenine dinucleotide phosphate-cytochrome P-450 reductase in bovine follicles and corpora lutea. Changes in specific contents during the ovarian cycle. Endocrinology. 1986 Apr;118(4):1366–1374. doi: 10.1210/endo-118-4-1366. [DOI] [PubMed] [Google Scholar]
  31. Rodgers R. J., Waterman M. R., Simpson E. R. Levels of messenger ribonucleic acid encoding cholesterol side-chain cleavage cytochrome P-450, 17 alpha-hydroxylase cytochrome P-450, adrenodoxin, and low density lipoprotein receptor in bovine follicles and corpora lutea throughout the ovarian cycle. Mol Endocrinol. 1987 Mar;1(3):274–279. doi: 10.1210/mend-1-3-274. [DOI] [PubMed] [Google Scholar]
  32. Roesler W. J., Vandenbark G. R., Hanson R. W. Cyclic AMP and the induction of eukaryotic gene transcription. J Biol Chem. 1988 Jul 5;263(19):9063–9066. [PubMed] [Google Scholar]
  33. Simpson E. R., Waterman M. R. Regulation of the synthesis of steroidogenic enzymes in adrenal cortical cells by ACTH. Annu Rev Physiol. 1988;50:427–440. doi: 10.1146/annurev.ph.50.030188.002235. [DOI] [PubMed] [Google Scholar]
  34. Solish S. B., Picado-Leonard J., Morel Y., Kuhn R. W., Mohandas T. K., Hanukoglu I., Miller W. L. Human adrenodoxin reductase: two mRNAs encoded by a single gene on chromosome 17cen----q25 are expressed in steroidogenic tissues. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7104–7108. doi: 10.1073/pnas.85.19.7104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Toaff M. E., Strauss J. F., 3rd, Hammond J. M. Regulation of cytochrome P-450scc in immature porcine granulosa cells by FSH and estradiol. Endocrinology. 1983 Mar;112(3):1156–1158. doi: 10.1210/endo-112-3-1156. [DOI] [PubMed] [Google Scholar]
  36. Tokuyasu K. T. Immunochemistry on ultrathin frozen sections. Histochem J. 1980 Jul;12(4):381–403. doi: 10.1007/BF01011956. [DOI] [PubMed] [Google Scholar]
  37. Trzeciak W. H., Waterman M. R., Simpson E. R. Synthesis of the cholesterol side-chain cleavage enzymes in cultured rat ovarian granulosa cells: induction by follicle-stimulating hormone and dibutyryl adenosine 3',5'-monophosphate. Endocrinology. 1986 Jul;119(1):323–330. doi: 10.1210/endo-119-1-323. [DOI] [PubMed] [Google Scholar]
  38. Tuckey R. C., Kostadinovic Z., Stevenson P. M. Ferredoxin and cytochrome P-450scc concentrations in granulosa cells of porcine ovaries during follicular cell growth and luteinization. J Steroid Biochem. 1988 Aug;31(2):201–205. doi: 10.1016/0022-4731(88)90055-6. [DOI] [PubMed] [Google Scholar]
  39. Veldhuis J. D., Rodgers R. J. Mechanisms subserving the steroidogenic synergism between follicle-stimulating hormone and insulin-like growth factor I (somatomedin C). Alterations in cellular sterol metabolism in swine granulosa cells. J Biol Chem. 1987 Jun 5;262(16):7658–7664. [PubMed] [Google Scholar]
  40. Voutilainen R., Picado-Leonard J., DiBlasio A. M., Miller W. L. Hormonal and developmental regulation of adrenodoxin messenger ribonucleic acid in steroidogenic tissues. J Clin Endocrinol Metab. 1988 Feb;66(2):383–388. doi: 10.1210/jcem-66-2-383. [DOI] [PubMed] [Google Scholar]
  41. Voutilainen R., Tapanainen J., Chung B. C., Matteson K. J., Miller W. L. Hormonal regulation of P450scc (20,22-desmolase) and P450c17 (17 alpha-hydroxylase/17,20-lyase) in cultured human granulosa cells. J Clin Endocrinol Metab. 1986 Jul;63(1):202–207. doi: 10.1210/jcem-63-1-202. [DOI] [PubMed] [Google Scholar]
  42. Zlotkin T., Farkash Y., Orly J. Cell-specific expression of immunoreactive cholesterol side-chain cleavage cytochrome P-450 during follicular development in the rat ovary. Endocrinology. 1986 Dec;119(6):2809–2820. doi: 10.1210/endo-119-6-2809. [DOI] [PubMed] [Google Scholar]
  43. Zor U. Role of cytoskeletal organization in the regulation of adenylate cyclase-cyclic adenosine monophosphate by hormones. Endocr Rev. 1983 Winter;4(1):1–21. doi: 10.1210/edrv-4-1-1. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES