Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1990 Oct 1;111(4):1363–1371. doi: 10.1083/jcb.111.4.1363

Bactenecins, defense polypeptides of bovine neutrophils, are generated from precursor molecules stored in the large granules

PMCID: PMC2116251  PMID: 2211815

Abstract

Bactenecins are highly cationic polypeptides of bovine neutrophil granules and exert in vitro a potent antimicrobial activity. We have previously purified two bactenecins, designated in an abbreviated form Bac7 and Bac5 from their approximate molecular masses of 7 and 5 kD (Gennaro, R., B. Skerlavaj, and D. Romeo. 1989. Infect. Immun. 57:3142- 3146). Here we have studied the biosynthesis, processing, and localization of precursors of Bac7 and Bac5 in bovine bone marrow cells of the myeloid lineage. In vitro translation directed by mRNA isolated from these cells has shown that the primary translation products are preprobactenecins of 23.5 and 21 kD, and are processed to polypeptides of 20 and 15.8 kD, respectively. The 20-kD polypeptide is the granule storage form of Bac7, or proBac7, as also demonstrated by Western blot analysis of lysates of peripheral neutrophils. Between 15 and 50 min from the beginning of its biosynthesis the 15.8-kD polypeptide is converted into the 15-kD granule storage form of Bac5, or proBac5. As shown by immunogold EM, proBac7 and proBac5 are sorted and targeted to the matrix of the so called large granules, which are the predominant organelles in the cytoplasm of bovine neutrophils and are the exclusive store of the nonoxidative antimicrobial system of these cells. Solubilization of granules with Triton X-100 with concomitant unmasking of proteases leads to cleavage of the proforms to Bac7 and Bac5. Experiments performed with protease inhibitors suggest that the proteolytic cleavage is catalyzed in detergent-solubilized neutrophils by neutral serine protease(s), very likely derived from the azurophil granules.

Full Text

The Full Text of this article is available as a PDF (2.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amrein P. C., Stossel T. P. Prevention of degradation of human polymorphonuclear leukocyte proteins by diisopropylfluorophosphate. Blood. 1980 Sep;56(3):442–447. [PubMed] [Google Scholar]
  2. Baggiolini M., Horisberger U., Gennaro R., Dewald B. Identification of three types of granules in neutrophils of ruminants. Ultrastructure of circulating and maturing cells. Lab Invest. 1985 Feb;52(2):151–158. [PubMed] [Google Scholar]
  3. Barker R. L., Gleich G. J., Pease L. R. Acidic precursor revealed in human eosinophil granule major basic protein cDNA. J Exp Med. 1988 Oct 1;168(4):1493–1498. doi: 10.1084/jem.168.4.1493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cramer E. M., Beesley J. E., Pulford K. A., Breton-Gorius J., Mason D. Y. Colocalization of elastase and myeloperoxidase in human blood and bone marrow neutrophils using a monoclonal antibody and immunogold. Am J Pathol. 1989 Jun;134(6):1275–1284. [PMC free article] [PubMed] [Google Scholar]
  5. Daher K. A., Lehrer R. I., Ganz T., Kronenberg M. Isolation and characterization of human defensin cDNA clones. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7327–7331. doi: 10.1073/pnas.85.19.7327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ganz T., Selsted M. E., Szklarek D., Harwig S. S., Daher K., Bainton D. F., Lehrer R. I. Defensins. Natural peptide antibiotics of human neutrophils. J Clin Invest. 1985 Oct;76(4):1427–1435. doi: 10.1172/JCI112120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gennaro R., Dewald B., Horisberger U., Gubler H. U., Baggiolini M. A novel type of cytoplasmic granule in bovine neutrophils. J Cell Biol. 1983 Jun;96(6):1651–1661. doi: 10.1083/jcb.96.6.1651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gennaro R., Skerlavaj B., Romeo D. Purification, composition, and activity of two bactenecins, antibacterial peptides of bovine neutrophils. Infect Immun. 1989 Oct;57(10):3142–3146. doi: 10.1128/iai.57.10.3142-3146.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Goldstein I. M., Hoffstein S. T., Weissmann G. Mechanisms of lysosomal enzyme release from human polymorphonuclear leukocytes. Effects of phorbol myristate acetate. J Cell Biol. 1975 Sep;66(3):647–652. doi: 10.1083/jcb.66.3.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gray P. W., Flaggs G., Leong S. R., Gumina R. J., Weiss J., Ooi C. E., Elsbach P. Cloning of the cDNA of a human neutrophil bactericidal protein. Structural and functional correlations. J Biol Chem. 1989 Jun 5;264(16):9505–9509. [PubMed] [Google Scholar]
  11. Griffiths G., Brands R., Burke B., Louvard D., Warren G. Viral membrane proteins acquire galactose in trans Golgi cisternae during intracellular transport. J Cell Biol. 1982 Dec;95(3):781–792. doi: 10.1083/jcb.95.3.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. HIRSCH J. G. Cinemicrophotographic observations on granule lysis in polymorphonuclear leucocytes during phagocytosis. J Exp Med. 1962 Dec 1;116:827–834. doi: 10.1084/jem.116.6.827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Johnson K. R., Nauseef W. M., Care A., Wheelock M. J., Shane S., Hudson S., Koeffler H. P., Selsted M., Miller C., Rovera G. Characterization of cDNA clones for human myeloperoxidase: predicted amino acid sequence and evidence for multiple mRNA species. Nucleic Acids Res. 1987 Mar 11;15(5):2013–2028. doi: 10.1093/nar/15.5.2013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Marzari R., Scaggiante B., Skerlavaj B., Bittolo M., Gennaro R., Romeo D. Small, antibacterial and large, inactive peptides of neutrophil granules share immunoreactivity to a monoclonal antibody. Infect Immun. 1988 Aug;56(8):2193–2197. doi: 10.1128/iai.56.8.2193-2197.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. McGrogan M., Simonsen C., Scott R., Griffith J., Ellis N., Kennedy J., Campanelli D., Nathan C., Gabay J. Isolation of a complementary DNA clone encoding a precursor to human eosinophil major basic protein. J Exp Med. 1988 Dec 1;168(6):2295–2308. doi: 10.1084/jem.168.6.2295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mottola C., Gennaro R., Marzullo A., Romeo D. Isolation and partial characterization of the plasma membrane of purified bovine neutrophils. Eur J Biochem. 1980 Oct;111(2):341–346. doi: 10.1111/j.1432-1033.1980.tb04947.x. [DOI] [PubMed] [Google Scholar]
  18. Ooi C. E., Weiss J., Elsbach P., Frangione B., Mannion B. A 25-kDa NH2-terminal fragment carries all the antibacterial activities of the human neutrophil 60-kDa bactericidal/permeability-increasing protein. J Biol Chem. 1987 Nov 5;262(31):14891–14894. [PubMed] [Google Scholar]
  19. Romeo D., Skerlavaj B., Bolognesi M., Gennaro R. Structure and bactericidal activity of an antibiotic dodecapeptide purified from bovine neutrophils. J Biol Chem. 1988 Jul 15;263(20):9573–9575. [PubMed] [Google Scholar]
  20. Rouse B. T., Wardley R. C., Babiuk L. A., Mukkur T. K. The role of neutrophils in antiviral defense--in vitro studies on the mechanism of antiviral inhibition. J Immunol. 1977 Jun;118(6):1957–1961. [PubMed] [Google Scholar]
  21. Schneider C., Newman R. A., Sutherland D. R., Asser U., Greaves M. F. A one-step purification of membrane proteins using a high efficiency immunomatrix. J Biol Chem. 1982 Sep 25;257(18):10766–10769. [PubMed] [Google Scholar]
  22. Segal A. W., Dorling J., Coade S. Kinetics of fusion of the cytoplasmic granules with phagocytic vacuoles in human polymorphonuclear leukocytes. Biochemical and morphological studies. J Cell Biol. 1980 Apr;85(1):42–59. doi: 10.1083/jcb.85.1.42. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Segal A. W., Geisow M., Garcia R., Harper A., Miller R. The respiratory burst of phagocytic cells is associated with a rise in vacuolar pH. Nature. 1981 Apr 2;290(5805):406–409. doi: 10.1038/290406a0. [DOI] [PubMed] [Google Scholar]
  24. Szewczyk B., Kozloff L. M. A method for the efficient blotting of strongly basic proteins from sodium dodecyl sulfate-polyacrylamide gels to nitrocellulose. Anal Biochem. 1985 Nov 1;150(2):403–407. doi: 10.1016/0003-2697(85)90528-7. [DOI] [PubMed] [Google Scholar]
  25. Townsend J., Duffus W. P. Trypanosoma theileri: antibody-dependent killing by purified populations of bovine leucocytes. Clin Exp Immunol. 1982 May;48(2):289–299. [PMC free article] [PubMed] [Google Scholar]
  26. Walker J. M., Valli V. E., Lumsden J. H. Colony formation in culture by bovine granulopoietic progenitor cells. Can J Comp Med. 1974 Apr;38(2):145–152. [PMC free article] [PubMed] [Google Scholar]
  27. Williams M. R., Bunch K. J. Variation among cows in the ability of their blood polymorphonuclear leucocytes to kill Escherichia coli and Staphylococcus aureus. Res Vet Sci. 1981 May;30(3):298–302. [PubMed] [Google Scholar]
  28. Zerial A., Skerlavaj B., Gennaro R., Romeo D. Inactivation of herpes simplex virus by protein components of bovine neutrophil granules. Antiviral Res. 1987 Jul;7(6):341–352. doi: 10.1016/0166-3542(87)90016-7. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES