Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1990 Sep 1;111(3):909–917. doi: 10.1083/jcb.111.3.909

Exocytosis in mast cells by basic secretagogues: evidence for direct activation of GTP-binding proteins

PMCID: PMC2116270  PMID: 1697300

Abstract

Histamine release induced by the introduction of a nonhydrolyzable analogue of GTP, GTP-gamma-S, into ATP-permeabilized mast cells, is associated with phosphoinositide breakdown, as evidenced by the production of phosphatidic acid (PA) in a neomycin-sensitive process. The dependency of both PA formation and histamine secretion on GTP- gamma-S concentrations is bell shaped. Whereas concentrations of up to 0.1 mM GTP-gamma-S stimulate both processes, at higher concentrations the cells' responsiveness is inhibited. At a concentration of 1 mM, GTP- gamma-S self-inhibits both PA formation and histamine secretion. Inhibition of secretion can, however, be overcome by the basic secretagogues compound 48/80 and mastoparan that in suboptimal doses synergize with 1 mM GTP-gamma-S to potentiate secretion. Secretion under these conditions is not accompanied by PA formation and is resistant both to depletion of Ca2+ from internal stores and to pertussis toxin (PtX) treatment. In addition, 48/80, like mastoparan, is capable of directly stimulating the GTPase activity of G-proteins in a cell-free system. Together, our results are consistent with a model in which the continuous activation of a phosphoinositide-hydrolyzing phospholipase C (PLC) by a stimulatory G-protein suffices to trigger histamine secretion. Basic secretagogues of mast cells, such as compound 48/80 and mastoparan, are capable of inducing secretion in a mechanism that bypasses PLC by directly activating a G-protein that is presumably located downstream from PLC (GE). Thereby, these secretagogues induce histamine secretion in a receptor-independent manner.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barrowman M. M., Cockcroft S., Gomperts B. D. Two roles for guanine nucleotides in the stimulus-secretion sequence of neutrophils. Nature. 1986 Feb 6;319(6053):504–507. doi: 10.1038/319504a0. [DOI] [PubMed] [Google Scholar]
  2. Bocckino S. B., Blackmore P. F., Wilson P. B., Exton J. H. Phosphatidate accumulation in hormone-treated hepatocytes via a phospholipase D mechanism. J Biol Chem. 1987 Nov 5;262(31):15309–15315. [PubMed] [Google Scholar]
  3. Cockcroft S. Ca2+-dependent conversion of phosphatidylinositol to phosphatidate in neutrophils stimulated with fMet-Leu-Phe or ionophore A23187. Biochim Biophys Acta. 1984 Aug 15;795(1):37–46. doi: 10.1016/0005-2760(84)90102-4. [DOI] [PubMed] [Google Scholar]
  4. Cockcroft S., Gomperts B. D. Evidence for a role of phosphatidylinositol turnover in stimulus-secretion coupling. Studies with rat peritoneal mast cells. Biochem J. 1979 Mar 15;178(3):681–687. doi: 10.1042/bj1780681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cockcroft S., Gomperts B. D. Role of guanine nucleotide binding protein in the activation of polyphosphoinositide phosphodiesterase. Nature. 1985 Apr 11;314(6011):534–536. doi: 10.1038/314534a0. [DOI] [PubMed] [Google Scholar]
  6. Ennis M., Truneh A., White J. R., Pearce F. L. Calcium pools involved in histamine release from rat mast cells. Int Arch Allergy Appl Immunol. 1980;62(4):467–471. doi: 10.1159/000232551. [DOI] [PubMed] [Google Scholar]
  7. Fernandez J. M., Lindau M., Eckstein F. Intracellular stimulation of mast cells with guanine nucleotides mimic antigenic stimulation. FEBS Lett. 1987 May 25;216(1):89–93. doi: 10.1016/0014-5793(87)80762-7. [DOI] [PubMed] [Google Scholar]
  8. Fernandez J. M., Neher E., Gomperts B. D. Capacitance measurements reveal stepwise fusion events in degranulating mast cells. 1984 Nov 29-Dec 5Nature. 312(5993):453–455. doi: 10.1038/312453a0. [DOI] [PubMed] [Google Scholar]
  9. Foreman J. C., Mongar J. L. The role of the alkaline earth ions in anaphylactic histamine secretion. J Physiol. 1972 Aug;224(3):753–769. doi: 10.1113/jphysiol.1972.sp009921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gilman A. G. G proteins: transducers of receptor-generated signals. Annu Rev Biochem. 1987;56:615–649. doi: 10.1146/annurev.bi.56.070187.003151. [DOI] [PubMed] [Google Scholar]
  11. Gomperts B. D. Involvement of guanine nucleotide-binding protein in the gating of Ca2+ by receptors. Nature. 1983 Nov 3;306(5938):64–66. doi: 10.1038/306064a0. [DOI] [PubMed] [Google Scholar]
  12. Herrmann E., Jakobs K. H. Stimulation and inhibition of human platelet membrane high-affinity GTPase by neomycin. FEBS Lett. 1988 Feb 29;229(1):49–53. doi: 10.1016/0014-5793(88)80795-6. [DOI] [PubMed] [Google Scholar]
  13. Higashijima T., Uzu S., Nakajima T., Ross E. M. Mastoparan, a peptide toxin from wasp venom, mimics receptors by activating GTP-binding regulatory proteins (G proteins). J Biol Chem. 1988 May 15;263(14):6491–6494. [PubMed] [Google Scholar]
  14. Howell T. W., Cockcroft S., Gomperts B. D. Essential synergy between Ca2+ and guanine nucleotides in exocytotic secretion from permeabilized rat mast cells. J Cell Biol. 1987 Jul;105(1):191–197. doi: 10.1083/jcb.105.1.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Huff R. M., Neer E. J. Subunit interactions of native and ADP-ribosylated alpha 39 and alpha 41, two guanine nucleotide-binding proteins from bovine cerebral cortex. J Biol Chem. 1986 Jan 25;261(3):1105–1110. [PubMed] [Google Scholar]
  16. Katada T., Oinuma M., Ui M. Two guanine nucleotide-binding proteins in rat brain serving as the specific substrate of islet-activating protein, pertussis toxin. Interaction of the alpha-subunits with beta gamma-subunits in development of their biological activities. J Biol Chem. 1986 Jun 25;261(18):8182–8191. [PubMed] [Google Scholar]
  17. Katakami Y., Kaibuchi K., Sawamura M., Takai Y., Nishizuka Y. Synergistic action of protein kinase C and calcium for histamine release from rat peritoneal mast cells. Biochem Biophys Res Commun. 1984 Jun 15;121(2):573–578. doi: 10.1016/0006-291x(84)90220-1. [DOI] [PubMed] [Google Scholar]
  18. Lagunoff D., Martin T. W., Read G. Agents that release histamine from mast cells. Annu Rev Pharmacol Toxicol. 1983;23:331–351. doi: 10.1146/annurev.pa.23.040183.001555. [DOI] [PubMed] [Google Scholar]
  19. Lawson D. Rat peritoneal mast cells: a model system for studying membrane fusion. Soc Gen Physiol Ser. 1980;34:27–44. [PubMed] [Google Scholar]
  20. Lindau M., Nüsse O. Pertussis toxin does not affect the time course of exocytosis in mast cells stimulated by intracellular application of GTP-gamma-S. FEBS Lett. 1987 Oct 5;222(2):317–321. doi: 10.1016/0014-5793(87)80393-9. [DOI] [PubMed] [Google Scholar]
  21. Nakamura T., Ui M. Islet-activating protein, pertussis toxin, inhibits Ca2+-induced and guanine nucleotide-dependent releases of histamine and arachidonic acid from rat mast cells. FEBS Lett. 1984 Aug 6;173(2):414–418. doi: 10.1016/0014-5793(84)80816-9. [DOI] [PubMed] [Google Scholar]
  22. Oberdisse E., Lapetina E. G. GDP beta S enhances the activation of phospholipase C caused by thrombin in human platelets: evidence for involvement of an inhibitory GTP-binding protein. Biochem Biophys Res Commun. 1987 May 14;144(3):1188–1196. doi: 10.1016/0006-291x(87)91437-9. [DOI] [PubMed] [Google Scholar]
  23. Okano Y., Takagi H., Tohmatsu T., Nakashima S., Kuroda Y., Saito K., Nozawa Y. A wasp venom mastoparan-induced polyphosphoinositide breakdown in rat peritoneal mast cells. FEBS Lett. 1985 Sep 2;188(2):363–366. doi: 10.1016/0014-5793(85)80403-8. [DOI] [PubMed] [Google Scholar]
  24. Ortner M. J., Chignell C. F. Spectroscopic studies of rat mast cells, mouse mastocytoma cells, and compound 48/80-II. The synthesis and some binding properties of spin-labeled 48/80. Biochem Pharmacol. 1981 Feb 15;30(4):283–288. doi: 10.1016/0006-2952(81)90055-1. [DOI] [PubMed] [Google Scholar]
  25. Penner R. Multiple signaling pathways control stimulus-secretion coupling in rat peritoneal mast cells. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9856–9860. doi: 10.1073/pnas.85.24.9856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Penner R., Pusch M., Neher E. Washout phenomena in dialyzed mast cells allow discrimination of different steps in stimulus-secretion coupling. Biosci Rep. 1987 Apr;7(4):313–321. doi: 10.1007/BF01121453. [DOI] [PubMed] [Google Scholar]
  27. Rana R. S., Sekar M. C., Hokin L. E., MacDonald M. J. A possible role for glucose metabolites in the regulation of inositol-1,4,5-trisphosphate 5-phosphomonoesterase activity in pancreatic islets. J Biol Chem. 1986 Apr 25;261(12):5237–5240. [PubMed] [Google Scholar]
  28. Reimann E. M., Umfleet R. A. Selective precipitation of 32Pi onto filter papers. Application to ATPase and cyclic AMP phosphodiesterase determination. Biochim Biophys Acta. 1978 Apr 12;523(2):516–521. doi: 10.1016/0005-2744(78)90054-2. [DOI] [PubMed] [Google Scholar]
  29. Repke H., Bienert M. Mast cell activation--a receptor-independent mode of substance P action? FEBS Lett. 1987 Sep 14;221(2):236–240. doi: 10.1016/0014-5793(87)80932-8. [DOI] [PubMed] [Google Scholar]
  30. Repke H., Piotrowski W., Bienert M., Foreman J. C. Histamine release induced by Arg-Pro-Lys-Pro(CH2)11CH3 from rat peritoneal mast cells. J Pharmacol Exp Ther. 1987 Oct;243(1):317–321. [PubMed] [Google Scholar]
  31. Sagi-Eisenberg R., Ben-Neriah Z., Pecht I., Terry S., Blumberg S. Structure-activity relationship in the mast cell degranulating capacity of neurotensin fragments. Neuropharmacology. 1983 Feb;22(2):197–201. doi: 10.1016/0028-3908(83)90009-6. [DOI] [PubMed] [Google Scholar]
  32. Sagi-Eisenberg R., Foreman J. C., Raval P. J., Cockcroft S. Protein and diacylglycerol phosphorylation in the stimulus-secretion coupling of rat mast cells. Immunology. 1987 Jun;61(2):203–206. [PMC free article] [PubMed] [Google Scholar]
  33. Sagi-Eisenberg R., Foreman J. C., Shelly R. Histamine release induced by histone and phorbol ester from rat peritoneal mast cells. Eur J Pharmacol. 1985 Jul 11;113(1):11–17. doi: 10.1016/0014-2999(85)90337-1. [DOI] [PubMed] [Google Scholar]
  34. Sagi-Eisenberg R., Lieman H., Pecht I. Protein kinase C regulation of the receptor-coupled calcium signal in histamine-secreting rat basophilic leukaemia cells. Nature. 1985 Jan 3;313(5997):59–60. doi: 10.1038/313059a0. [DOI] [PubMed] [Google Scholar]
  35. Sagi-Eisenberg R., Pecht I. Protein kinase C, a coupling element between stimulus and secretion of basophils. Immunol Lett. 1984;8(5):237–241. doi: 10.1016/0165-2478(84)90002-6. [DOI] [PubMed] [Google Scholar]
  36. Saito H., Okajima F., Molski T. F., Sha'afi R. I., Ui M., Ishizaka T. Effects of ADP-ribosylation of GTP-binding protein by pertussis toxin on immunoglobulin E-dependent and -independent histamine release from mast cells and basophils. J Immunol. 1987 Jun 1;138(11):3927–3934. [PubMed] [Google Scholar]
  37. Segal D. M., Taurog J. D., Metzger H. Dimeric immunoglobulin E serves as a unit signal for mast cell degranulation. Proc Natl Acad Sci U S A. 1977 Jul;74(7):2993–2997. doi: 10.1073/pnas.74.7.2993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Watson S. P., McConnell R. T., Lapetina E. G. The rapid formation of inositol phosphates in human platelets by thrombin is inhibited by prostacyclin. J Biol Chem. 1984 Nov 10;259(21):13199–13203. [PubMed] [Google Scholar]
  39. White J. R., Ishizaka T., Ishizaka K., Sha'afi R. Direct demonstration of increased intracellular concentration of free calcium as measured by quin-2 in stimulated rat peritoneal mast cell. Proc Natl Acad Sci U S A. 1984 Jul;81(13):3978–3982. doi: 10.1073/pnas.81.13.3978. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES