Abstract
The major part of mast cell actin is Triton-soluble and behaves as a monomer in the DNase I inhibition assay. Thus, actin exists predominantly in monomeric or short filament form, through filamentous actin is clearly apparent in the cortical region after rhodamine- phalloidin (RP) staining. The minimum actin content is estimated to be approximately 2.5 micrograms/10(6) cells (cytosolic concentration approximately 110 microM. After permeabilization of mast cells by the bacterial cytolysin streptolysin-O, approximately 60% of the Triton- soluble actin leaks out within 10 min. However, the staining of the cortical region by RP remains undiminished, and the cells are still capable of exocytosis when stimulated by GTP-gamma-S together with Ca2+. In the presence of cytochalasin E the requirement for Ca2+ is decreased, indicating that disassembly of the cytoskeleton may be a prerequisite for exocytosis. This disassembly is likely to be controlled by Ca2(+)-dependent actin regulatory proteins; their presence is indicated by a Ca2(+)-dependent inhibition of polymerization of extraneous pyrene-G-actin by a Triton extract of mast cells. The effect of cytochalasin E on secretion is similar to that of phorbol myristate acetate, an activator of protein kinase C; both agents enhance the apparent affinity for Ca2+ and cause variable extents of Ca2(+)-independent secretion. Exposing the permeabilized cells to increasing concentrations of Ca2+ caused a progressive decrease in F-actin levels as measured by flow cytometry of RP-stained cells. In this respect, both cytochalasin E and phorbol ester mimicked the effects of calcium. GTP-gamma-S was not required for the Ca2(+)- dependent cortical disassembly. Thus, since conditions have not yet been identified where secretion can occur in its absence, cortical disassembly may be essential (though it is not sufficient) for exocytosis to occur.
Full Text
The Full Text of this article is available as a PDF (1.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amrein P. C., Stossel T. P. Prevention of degradation of human polymorphonuclear leukocyte proteins by diisopropylfluorophosphate. Blood. 1980 Sep;56(3):442–447. [PubMed] [Google Scholar]
- Bauduin H., Stock C., Vincent D., Grenier J. F. Microfilamentous system and secretion of enzyme in the exocrine pancreas. Effect of cytochalasin B. J Cell Biol. 1975 Jul;66(1):165–181. doi: 10.1083/jcb.66.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bernstein B. W., Bamburg J. R. Cycling of actin assembly in synaptosomes and neurotransmitter release. Neuron. 1989 Aug;3(2):257–265. doi: 10.1016/0896-6273(89)90039-1. [DOI] [PubMed] [Google Scholar]
- Bernstein B. W., Bamburg J. R. Reorganization of actin in depolarized synaptosomes. J Neurosci. 1985 Oct;5(10):2565–2569. doi: 10.1523/JNEUROSCI.05-10-02565.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blikstad I., Markey F., Carlsson L., Persson T., Lindberg U. Selective assay of monomeric and filamentous actin in cell extracts, using inhibition of deoxyribonuclease I. Cell. 1978 Nov;15(3):935–943. doi: 10.1016/0092-8674(78)90277-5. [DOI] [PubMed] [Google Scholar]
- Bray D., Heath J., Moss D. The membrane-associated 'cortex' of animal cells: its structure and mechanical properties. J Cell Sci Suppl. 1986;4:71–88. doi: 10.1242/jcs.1986.supplement_4.5. [DOI] [PubMed] [Google Scholar]
- Burgoyne R. D., Cheek T. R. Reorganisation of peripheral actin filaments as a prelude to exocytosis. Biosci Rep. 1987 Apr;7(4):281–288. doi: 10.1007/BF01121449. [DOI] [PubMed] [Google Scholar]
- Burgoyne R. D., Morgan A., O'Sullivan A. J. The control of cytoskeletal actin and exocytosis in intact and permeabilized adrenal chromaffin cells: role of calcium and protein kinase C. Cell Signal. 1989;1(4):323–334. doi: 10.1016/0898-6568(89)90051-x. [DOI] [PubMed] [Google Scholar]
- Carson M., Weber A., Zigmond S. H. An actin-nucleating activity in polymorphonuclear leukocytes is modulated by chemotactic peptides. J Cell Biol. 1986 Dec;103(6 Pt 2):2707–2714. doi: 10.1083/jcb.103.6.2707. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cleveland D. W., Fischer S. G., Kirschner M. W., Laemmli U. K. Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J Biol Chem. 1977 Feb 10;252(3):1102–1106. [PubMed] [Google Scholar]
- Cooper J. A. Effects of cytochalasin and phalloidin on actin. J Cell Biol. 1987 Oct;105(4):1473–1478. doi: 10.1083/jcb.105.4.1473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gomperts B. D., Cockcroft S., Howell T. W., Nüsse O., Tatham P. E. The dual effector system for exocytosis in mast cells: obligatory requirement for both Ca2+ and GTP. Biosci Rep. 1987 May;7(5):369–381. doi: 10.1007/BF01362501. [DOI] [PubMed] [Google Scholar]
- Helander H. F., Bloom G. D. Quantitative analysis of mast cell structure. J Microsc. 1974 Apr;100(3):315–321. doi: 10.1111/j.1365-2818.1974.tb03943.x. [DOI] [PubMed] [Google Scholar]
- Howell T. W., Cockcroft S., Gomperts B. D. Essential synergy between Ca2+ and guanine nucleotides in exocytotic secretion from permeabilized rat mast cells. J Cell Biol. 1987 Jul;105(1):191–197. doi: 10.1083/jcb.105.1.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howell T. W., Gomperts B. D. Rat mast cells permeabilised with streptolysin O secrete histamine in response to Ca2+ at concentrations buffered in the micromolar range. Biochim Biophys Acta. 1987 Feb 18;927(2):177–183. doi: 10.1016/0167-4889(87)90132-7. [DOI] [PubMed] [Google Scholar]
- Howell T. W., Kramer I. M., Gomperts B. D. Protein phosphorylation and the dependence on Ca2+ and GTP-gamma-S for exocytosis from permeabilised mast cells. Cell Signal. 1989;1(2):157–163. doi: 10.1016/0898-6568(89)90005-3. [DOI] [PubMed] [Google Scholar]
- Knight D. E., Baker P. F. Calcium-dependence of catecholamine release from bovine adrenal medullary cells after exposure to intense electric fields. J Membr Biol. 1982;68(2):107–140. doi: 10.1007/BF01872259. [DOI] [PubMed] [Google Scholar]
- Koffer A., Daridan M. Actin-regulating activities in cultured BHK cells. J Cell Sci. 1985 Apr;75:239–257. doi: 10.1242/jcs.75.1.239. [DOI] [PubMed] [Google Scholar]
- Koffer A., Gomperts B. D. Soluble proteins as modulators of the exocytotic reaction of permeabilised rat mast cells. J Cell Sci. 1989 Nov;94(Pt 3):585–591. doi: 10.1242/jcs.94.3.585. [DOI] [PubMed] [Google Scholar]
- Koffer A., Gratzer W. B., Clarke G. D., Hales A. Phase equilibria of cytoplasmic actin of cultured epithelial (BHK) cells. J Cell Sci. 1983 May;61:191–218. doi: 10.1242/jcs.61.1.191. [DOI] [PubMed] [Google Scholar]
- Kouyama T., Mihashi K. Fluorimetry study of N-(1-pyrenyl)iodoacetamide-labelled F-actin. Local structural change of actin protomer both on polymerization and on binding of heavy meromyosin. Eur J Biochem. 1981;114(1):33–38. [PubMed] [Google Scholar]
- Krüger G., Bloom D., Diamant B. Structural aspects of histamine release in rat peritoneal mast cells. Effects of adenosine 5'-triphosphate and role of calcium. Int Arch Allergy Appl Immunol. 1974;47(1):1–13. doi: 10.1159/000231196. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lelkes P. I., Friedman J. E., Rosenheck K., Oplatka A. Destabilization of actin filaments as a requirement for the secretion of catecholamines from permeabilized chromaffin cells. FEBS Lett. 1986 Nov 24;208(2):357–363. doi: 10.1016/0014-5793(86)81049-3. [DOI] [PubMed] [Google Scholar]
- Liu Z. Y., Young J. I., Elson E. L. Rat basophilic leukemia cells stiffen when they secrete. J Cell Biol. 1987 Dec;105(6 Pt 2):2933–2943. doi: 10.1083/jcb.105.6.2933. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morrissey J. H. Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem. 1981 Nov 1;117(2):307–310. doi: 10.1016/0003-2697(81)90783-1. [DOI] [PubMed] [Google Scholar]
- Naccache P. H., Volpi M., Becker E. L., Makryannis A., Sha'afi R. I. Cannabinoid induced degranulation of rabbit neutrophils. Biochem Biophys Res Commun. 1982 Jun 30;106(4):1286–1290. doi: 10.1016/0006-291x(82)91252-9. [DOI] [PubMed] [Google Scholar]
- Nemeth E. F., Douglas W. W. Effects of microfilament-active drugs, phalloidin and the cytochalasins A and B, on exocytosis in mast cells evoked by 48/80 or A23187. Naunyn Schmiedebergs Arch Pharmacol. 1978 Apr;302(2):153–163. doi: 10.1007/BF00517982. [DOI] [PubMed] [Google Scholar]
- Nielsen E. H., Braun K., Johansen T. Reorganization of the subplasmalemmal cytoskeleton in association with exocytosis in rat mast cells. Histol Histopathol. 1989 Oct;4(4):473–477. [PubMed] [Google Scholar]
- Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature. 1984 Apr 19;308(5961):693–698. doi: 10.1038/308693a0. [DOI] [PubMed] [Google Scholar]
- Omann G. M., Porasik M. M., Sklar L. A. Oscillating actin polymerization/depolymerization responses in human polymorphonuclear leukocytes. J Biol Chem. 1989 Oct 5;264(28):16355–16358. [PubMed] [Google Scholar]
- Orr T. S., Hall D. E., Allison A. C. Role of contractile microfilaments in the release of histamine from mast cells. Nature. 1972 Apr 14;236(5346):350–351. doi: 10.1038/236350a0. [DOI] [PubMed] [Google Scholar]
- PATON W. D. Histamine release by compounds of simple chemical structure. Pharmacol Rev. 1957 Jun;9(2):269–328. [PubMed] [Google Scholar]
- Podolski J. L., Steck T. L. Association of deoxyribonuclease I with the pointed ends of actin filaments in human red blood cell membrane skeletons. J Biol Chem. 1988 Jan 15;263(2):638–645. [PubMed] [Google Scholar]
- Pollard T. D., Cooper J. A. Actin and actin-binding proteins. A critical evaluation of mechanisms and functions. Annu Rev Biochem. 1986;55:987–1035. doi: 10.1146/annurev.bi.55.070186.005011. [DOI] [PubMed] [Google Scholar]
- Rao K. M., Varani J. Actin polymerization induced by chemotactic peptide and concanavalin A in rat neutrophils. J Immunol. 1982 Oct;129(4):1605–1607. [PubMed] [Google Scholar]
- Schliwa M. Action of cytochalasin D on cytoskeletal networks. J Cell Biol. 1982 Jan;92(1):79–91. doi: 10.1083/jcb.92.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sha'afi R. I., Molski T. F. Signalling for increased cytoskeletal actin in neutrophils. Biochem Biophys Res Commun. 1987 Jun 15;145(2):934–941. doi: 10.1016/0006-291x(87)91055-2. [DOI] [PubMed] [Google Scholar]
- Sontag J. M., Aunis D., Bader M. F. Peripheral actin filaments control calcium-mediated catecholamine release from streptolysin-O-permeabilized chromaffin cells. Eur J Cell Biol. 1988 Jun;46(2):316–326. [PubMed] [Google Scholar]
- Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
- Stutchfield J., Howell S. L. The effect of phalloidin on insulin secretion from islets of Langerhans isolated from rat pancreas. FEBS Lett. 1984 Oct 1;175(2):393–396. doi: 10.1016/0014-5793(84)80775-9. [DOI] [PubMed] [Google Scholar]
- Verkhovsky A. B., Surgucheva I. G., Gelfand V. I. Phalloidin and tropomyosin do not prevent actin filament shortening by the 90 kD protein-actin complex from brain. Biochem Biophys Res Commun. 1984 Sep 17;123(2):596–603. doi: 10.1016/0006-291x(84)90271-7. [DOI] [PubMed] [Google Scholar]