Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1990 Sep 1;111(3):1081–1087. doi: 10.1083/jcb.111.3.1081

Control of actin filament length by phosphorylation of fragmin-actin complex

PMCID: PMC2116284  PMID: 2202733

Abstract

Fragmin is a Ca2(+)-sensitive F-actin-severing protein purified from a slime mold, Physarum polycephalum (Hasegawa, T., S. Takahashi, H. Hayashi, and S. Hatano. 1980. Biochemistry. 19:2677-2683). It binds to G-actin to form a 1:1 fragmin/actin complex in the presence of micromolar free Ca2+. The complex nucleates actin polymerization and caps the barbed end of the short F-actin (Sugino, H., and S. Hatano. 1982. Cell Motil. 2:457-470). Subsequent removal of Ca2+, however, hardly dissociates the complex. This complex nucleates actin polymerization and caps the F-actin regardless of Ca2+ concentration. Here we report that this activity of fragmin-actin complex can be abolished by phosphorylation of actin of the complex. When crude extract from Physarum plasmodium was incubated with 5 mM ATP and 1 mM EGTA, the activities of the complex decreased to a great extent. The inactivation of the complex in the crude extract was not observed in the presence of Ca2+. In addition, the activities of the complex inactivated in the crude extract were restored under conditions suitable for phosphatase reactions. We purified factors that inactivated fragmin-actin complex from the crude extract. These factors phosphorylated actin of the complex, and the activities of the complex decreased with an increased level of phosphorylation of the complex. These factors, termed actin kinase, also inactivated the complex that capped the barbed end of short F-actin, leading to elongation of the short F-actin to long F-actin. Thus the length of F-actin can be controlled by phosphorylation of fragmin-actin complex by actin kinase.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ampe C., Vandekerckhove J. The F-actin capping proteins of Physarum polycephalum: cap42(a) is very similar, if not identical, to fragmin and is structurally and functionally very homologous to gelsolin; cap42(b) is Physarum actin. EMBO J. 1987 Dec 20;6(13):4149–4157. doi: 10.1002/j.1460-2075.1987.tb02761.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bretscher A., Weber K. Villin is a major protein of the microvillus cytoskeleton which binds both G and F actin in a calcium-dependent manner. Cell. 1980 Jul;20(3):839–847. doi: 10.1016/0092-8674(80)90330-x. [DOI] [PubMed] [Google Scholar]
  3. Brown S. S., Yamamoto K., Spudich J. A. A 40,000-dalton protein from Dictyostelium discoideum affects assembly properties of actin in a Ca2+-dependent manner. J Cell Biol. 1982 Apr;93(1):205–210. doi: 10.1083/jcb.93.1.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. EBASHI S., EBASHI F. A NEW PROTEIN COMPONENT PARTICIPATING IN THE SUPERPRECIPITATION OF MYOSIN B. J Biochem. 1964 Jun;55:604–613. doi: 10.1093/oxfordjournals.jbchem.a127933. [DOI] [PubMed] [Google Scholar]
  5. Furuhashi K., Hatano S. A fragmin-like protein from plasmodium of Physarum polycephalum that severs F-actin and caps the barbed end of F-actin in a Ca2+-sensitive way. J Biochem. 1989 Aug;106(2):311–318. doi: 10.1093/oxfordjournals.jbchem.a122850. [DOI] [PubMed] [Google Scholar]
  6. GORNALL A. G., BARDAWILL C. J., DAVID M. M. Determination of serum proteins by means of the biuret reaction. J Biol Chem. 1949 Feb;177(2):751–766. [PubMed] [Google Scholar]
  7. Hasegawa T., Takahashi S., Hayashi H., Hatano S. Fragmin: a calcium ion sensitive regulatory factor on the formation of actin filaments. Biochemistry. 1980 Jun 10;19(12):2677–2683. doi: 10.1021/bi00553a021. [DOI] [PubMed] [Google Scholar]
  8. Hatano S., Owaribe K. A simple method for the isolation of actin from myxomycete plasmodia. J Biochem. 1977 Jul;82(1):201–205. doi: 10.1093/oxfordjournals.jbchem.a131670. [DOI] [PubMed] [Google Scholar]
  9. Hatano S., Tazawa M. Isolation, purification and characterization of byosin B from myxomycete plasmodium. Biochim Biophys Acta. 1968 Apr 9;154(3):507–519. doi: 10.1016/0005-2795(68)90011-1. [DOI] [PubMed] [Google Scholar]
  10. Ishigami M., Kuroda K., Hatano S. Dynamic aspects of the contractile system in Physarum plasmodium. III. Cyclic contraction-relaxation of the plasmodial fragment in accordance with the generation-degeneration of cytoplasmic actomyosin fibrils. J Cell Biol. 1987 Jul;105(1):381–386. doi: 10.1083/jcb.105.1.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Janmey P. A., Iida K., Yin H. L., Stossel T. P. Polyphosphoinositide micelles and polyphosphoinositide-containing vesicles dissociate endogenous gelsolin-actin complexes and promote actin assembly from the fast-growing end of actin filaments blocked by gelsolin. J Biol Chem. 1987 Sep 5;262(25):12228–12236. [PubMed] [Google Scholar]
  12. Korn E. D. Actin polymerization and its regulation by proteins from nonmuscle cells. Physiol Rev. 1982 Apr;62(2):672–737. doi: 10.1152/physrev.1982.62.2.672. [DOI] [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Lassing I., Lindberg U. Specific interaction between phosphatidylinositol 4,5-bisphosphate and profilactin. Nature. 1985 Apr 4;314(6010):472–474. doi: 10.1038/314472a0. [DOI] [PubMed] [Google Scholar]
  15. Maruta H., Isenberg G. Ca2+-dependent actin-binding phosphoprotein in Physarum polycephalum. II. Ca2+-dependent f-actin-capping activity of subunit a and its regulation by phosphorylation of subunit b. J Biol Chem. 1983 Aug 25;258(16):10151–10158. [PubMed] [Google Scholar]
  16. Maruta H., Isenberg G. Ca2+-dependent actin-binding phosphoprotein in Physarum polycephalum. Subunit b is a DNase I-binding and F-actin capping protein. J Biol Chem. 1984 Apr 25;259(8):5208–5213. [PubMed] [Google Scholar]
  17. Maruta H., Isenberg G., Schreckenbach T., Hallmann R., Risse G., Shibayama T., Hesse J. Ca2+-dependent actin-binding phosphoprotein in Physarum polycephalum. I. Ca2+/actin-dependent inhibition of its phosphorylation. J Biol Chem. 1983 Aug 25;258(16):10144–10150. [PubMed] [Google Scholar]
  18. Nishizuka Y. The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature. 1988 Aug 25;334(6184):661–665. doi: 10.1038/334661a0. [DOI] [PubMed] [Google Scholar]
  19. Ozaki K., Sugino H., Hasegawa T., Takahashi S., Hatano S. Isolation and characterization of Physarum profilin. J Biochem. 1983 Jan;93(1):295–298. doi: 10.1093/oxfordjournals.jbchem.a134167. [DOI] [PubMed] [Google Scholar]
  20. Pollard T. D., Cooper J. A. Actin and actin-binding proteins. A critical evaluation of mechanisms and functions. Annu Rev Biochem. 1986;55:987–1035. doi: 10.1146/annurev.bi.55.070186.005011. [DOI] [PubMed] [Google Scholar]
  21. Sonobe S., Takahashi S., Hatano S., Kuroda K. Phosphorylation of Amoeba G-actin and its effect on actin polymerization. J Biol Chem. 1986 Nov 5;261(31):14837–14843. [PubMed] [Google Scholar]
  22. Sugino H., Hatano S. Effect of fragmin on actin polymerization: evidence for enhancement of nucleation and capping of the barbed end. Cell Motil. 1982;2(5):457–470. doi: 10.1002/cm.970020505. [DOI] [PubMed] [Google Scholar]
  23. Sutoh K., Iwane M., Matsuzaki F., Kikuchi M., Ikai A. Isolation and characterization of a high molecular weight actin-binding protein from Physarum polycephalum plasmodia. J Cell Biol. 1984 May;98(5):1611–1618. doi: 10.1083/jcb.98.5.1611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Uyeda T. Q., Hatano S., Kohama K., Furuya M. Purification of myxamoebal fragmin, and switching of myxamoebal fragmin to plasmodial fragmin during differentiation of Physarum polycephalum. J Muscle Res Cell Motil. 1988 Jun;9(3):233–240. doi: 10.1007/BF01773893. [DOI] [PubMed] [Google Scholar]
  25. Weeds A. Actin-binding proteins--regulators of cell architecture and motility. Nature. 1982 Apr 29;296(5860):811–816. doi: 10.1038/296811a0. [DOI] [PubMed] [Google Scholar]
  26. Yin H. L., Stossel T. P. Control of cytoplasmic actin gel-sol transformation by gelsolin, a calcium-dependent regulatory protein. Nature. 1979 Oct 18;281(5732):583–586. doi: 10.1038/281583a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES