Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1990 Sep 1;111(3):941–953. doi: 10.1083/jcb.111.3.941

Nonselective autophagy of cytosolic enzymes by isolated rat hepatocytes

PMCID: PMC2116292  PMID: 2391370

Abstract

Seven cytosolic enzymes with varying half-lives (ornithine decarboxylase, 0.9 h; tyrosine aminotransferase, 3.1 h; tryptophan oxygenase, 3.3 h; serine dehydratase, 10.3 h; glucokinase, 12.7 h; lactate dehydrogenase, 17.0 h; aldolase, 17.4 h) were found to be autophagically sequestered at the same rate (3.5%/h) in isolated rat hepatocytes. Autophagy was measured as the accumulation of enzyme activity in the sedimentable organelles (mostly lysosomes) of electrodisrupted cells in the presence of the proteinase inhibitor leupeptin. Inhibitors of lysosomal fusion processes (vinblastine and asparagine) allowed accumulation of catalytically active enzyme (in prelysosomal vacuoles) even in the absence of proteolytic inhibition, showing that no inactivation step took place before lysosomal proteolysis. The completeness of protection by leupeptin indicates, furthermore, that a lysosomal cysteine proteinase is obligatorily required for the initial proteolytic attack upon autophagocytosed proteins. The experiments suggest that sequestration and degradation of normal cytosolic proteins by the autophagic-lysosomal pathway is a nonselective bulk process, and that nonautophagic mechanisms must be invoked to account for differential enzyme turnover.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amenta J. S., Sargus M. J., Baccino F. M. Effect of microtubular or translational inhibitors on general cell protein degradation. Evidence for a dual catabolic pathway. Biochem J. 1977 Nov 15;168(2):223–227. doi: 10.1042/bj1680223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beckerle M. C., Burridge K., DeMartino G. N., Croall D. E. Colocalization of calcium-dependent protease II and one of its substrates at sites of cell adhesion. Cell. 1987 Nov 20;51(4):569–577. doi: 10.1016/0092-8674(87)90126-7. [DOI] [PubMed] [Google Scholar]
  3. Beer D. G., Hjelle J. J., Petersen D. R., Malkinson A. M. Calcium-activated proteolytic activity in rat liver mitochondria. Biochem Biophys Res Commun. 1982 Dec 31;109(4):1276–1283. doi: 10.1016/0006-291x(82)91915-5. [DOI] [PubMed] [Google Scholar]
  4. Berger J. J., Dice J. F. Proteolysis in cultured cells during prolonged serum deprivation and replacement. Am J Physiol. 1986 Nov;251(5 Pt 1):C748–C753. doi: 10.1152/ajpcell.1986.251.5.C748. [DOI] [PubMed] [Google Scholar]
  5. Chiang H. L., Terlecky S. R., Plant C. P., Dice J. F. A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science. 1989 Oct 20;246(4928):382–385. doi: 10.1126/science.2799391. [DOI] [PubMed] [Google Scholar]
  6. Cihak A., Lamar C., Jr, Pitot H. C. L-tryptophan inhibition of tyrosine aminotransferase degradation in rat liver in vivo. Arch Biochem Biophys. 1973 May;156(1):188–194. doi: 10.1016/0003-9861(73)90356-1. [DOI] [PubMed] [Google Scholar]
  7. Desautels M., Goldberg A. L. Demonstration of an ATP-dependent, vanadate-sensitive endoprotease in the matrix of rat liver mitochondria. J Biol Chem. 1982 Oct 10;257(19):11673–11679. [PubMed] [Google Scholar]
  8. Dice J. F., Chiang H. L. Peptide signals for protein degradation within lysosomes. Biochem Soc Symp. 1989;55:45–55. [PubMed] [Google Scholar]
  9. FEIGELSON P., DASHMAN T., MARGOLIS F. The half-life-time of induced tryptophan peroxidase in vivo. Arch Biochem Biophys. 1959 Dec;85:478–482. doi: 10.1016/0003-9861(59)90514-4. [DOI] [PubMed] [Google Scholar]
  10. Falkenburg P. E., Haass C., Kloetzel P. M., Niedel B., Kopp F., Kuehn L., Dahlmann B. Drosophila small cytoplasmic 19S ribonucleoprotein is homologous to the rat multicatalytic proteinase. Nature. 1988 Jan 14;331(6152):190–192. doi: 10.1038/331190a0. [DOI] [PubMed] [Google Scholar]
  11. Fausto N. RNA and amine synthesis in the liver of rats given injections of thioacetamide. Cancer Res. 1970 Jul;30(7):1947–1952. [PubMed] [Google Scholar]
  12. Furuno K., Ishikawa T., Kato K. Appearance of autolysosomes in rat liver after leupeptin treatment. J Biochem. 1982 May;91(5):1485–1494. doi: 10.1093/oxfordjournals.jbchem.a133840. [DOI] [PubMed] [Google Scholar]
  13. Gordon P. B., Høyvik H., Seglen P. O. Sugar uptake by fluid-phase pinocytosis and diffusion in isolated rat hepatocytes. Biochem J. 1987 May 1;243(3):655–660. doi: 10.1042/bj2430655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gordon P. B., Kisen G. O., Kovács A. L., Seglen P. O. Experimental characterization of the autophagic-lysosomal pathway in isolated rat hepatocytes. Biochem Soc Symp. 1989;55:129–143. [PubMed] [Google Scholar]
  15. Gordon P. B., Seglen P. O. Autophagic sequestration of [14C]sucrose, introduced into rat hepatocytes by reversible electro-permeabilization. Exp Cell Res. 1982 Nov;142(1):1–14. doi: 10.1016/0014-4827(82)90402-5. [DOI] [PubMed] [Google Scholar]
  16. Gordon P. B., Seglen P. O. Prelysosomal convergence of autophagic and endocytic pathways. Biochem Biophys Res Commun. 1988 Feb 29;151(1):40–47. doi: 10.1016/0006-291x(88)90556-6. [DOI] [PubMed] [Google Scholar]
  17. Gordon P. B., Seglen P. O. Use of electrical methods in the study of hepatocytic autophagy. Biomed Biochim Acta. 1986;45(11-12):1635–1645. [PubMed] [Google Scholar]
  18. Gordon P. B., Tolleshaug H., Seglen P. O. Use of digitonin extraction to distinguish between autophagic-lysosomal sequestration and mitochondrial uptake of [14C]sucrose in hepatocytes. Biochem J. 1985 Dec 15;232(3):773–780. doi: 10.1042/bj2320773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Grinde B., Jahnsen R. Effects of protein-degradation inhibitors on the inactivation of tyrosine aminotransferase, tryptophan oxygenase and benzopyrene hydroxylase in isolated rat hepatocytes. Biochem J. 1982 Jan 15;202(1):191–196. doi: 10.1042/bj2020191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Grinde B., Seglen P. O. Differential effects of proteinase inhibitors and amines on the lysosomal and non-lysosomal pathways of protein degradation in isolated rat hepatocytes. Biochim Biophys Acta. 1980 Sep 17;632(1):73–86. doi: 10.1016/0304-4165(80)90250-0. [DOI] [PubMed] [Google Scholar]
  21. Grinde B., Seglen P. O. Leucine inhibition of autophagic vacuole formation in isolated rat hepatocytes. Exp Cell Res. 1981 Jul;134(1):33–39. doi: 10.1016/0014-4827(81)90460-2. [DOI] [PubMed] [Google Scholar]
  22. Grossman S. H., Dorn C. G., Potter V. R. The preparation and characterization of pure rat liver glucokinase. J Biol Chem. 1974 May 25;249(10):3055–3060. [PubMed] [Google Scholar]
  23. Hershko A. Ubiquitin-mediated protein degradation. J Biol Chem. 1988 Oct 25;263(30):15237–15240. [PubMed] [Google Scholar]
  24. Ishikawa T., Furuno K., Kato K. Ultrastructural studies on autolysosomes in rat hepatocytes after leupeptin treatment. Exp Cell Res. 1983 Mar;144(1):15–24. doi: 10.1016/0014-4827(83)90436-6. [DOI] [PubMed] [Google Scholar]
  25. Jefferson L. S., Pegg A. E. Studies on ornithine decarboxylase activity in the isolated perfused rat liver. Biochim Biophys Acta. 1977 Sep 15;484(1):177–187. doi: 10.1016/0005-2744(77)90123-1. [DOI] [PubMed] [Google Scholar]
  26. Jevell K. F., Seglen P. O. Tyrosine transaminase degradation in perfused liver after inhibition of protein synthesis by cycloheximide. Biochim Biophys Acta. 1969 Jan 21;174(1):398–400. doi: 10.1016/0005-2787(69)90266-4. [DOI] [PubMed] [Google Scholar]
  27. Jost J. P., Khairallah E. A., Pitot H. C. Studies on the induction and repression of enzymes in rat liver. V. Regulation of the rate of synthesis and degradation of serine dehydratase by dietary amino acids and glucose. J Biol Chem. 1968 Jun 10;243(11):3057–3066. [PubMed] [Google Scholar]
  28. Kenney F. T. Turnover of rat liver tyrosine transaminase: stabilization after inhibition of protein synthesis. Science. 1967 Apr 28;156(3774):525–528. doi: 10.1126/science.156.3774.525. [DOI] [PubMed] [Google Scholar]
  29. Knowles S. E., Ballard F. J. Selective control of the degradation of normal and aberrant proteins in Reuber H35 hepatoma cells. Biochem J. 1976 Jun 15;156(3):609–617. doi: 10.1042/bj1560609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kominami E., Hashida S., Khairallah E. A., Katunuma N. Sequestration of cytoplasmic enzymes in an autophagic vacuole-lysosomal system induced by injection of leupeptin. J Biol Chem. 1983 May 25;258(10):6093–6100. [PubMed] [Google Scholar]
  31. Kovács A. L., Grinde B., Seglen P. O. Inhibition of autophagic vacuole formation and protein degradation by amino acids in isolated hepatocytes. Exp Cell Res. 1981 Jun;133(2):431–436. doi: 10.1016/0014-4827(81)90336-0. [DOI] [PubMed] [Google Scholar]
  32. Kovács A. L., Reith A., Seglen P. O. Accumulation of autophagosomes after inhibition of hepatocytic protein degradation by vinblastine, leupeptin or a lysosomotropic amine. Exp Cell Res. 1982 Jan;137(1):191–201. doi: 10.1016/0014-4827(82)90020-9. [DOI] [PubMed] [Google Scholar]
  33. Kovács A. L., Seglen P. O. Inhibition of hepatocytic protein degradation by methylaminopurines and inhibitors of protein synthesis. Biochim Biophys Acta. 1981 Aug 17;676(2):213–220. doi: 10.1016/0304-4165(81)90189-6. [DOI] [PubMed] [Google Scholar]
  34. Kuehl L., Sumsion E. N. Turnover of several glycolytic enzymes in rat liver. J Biol Chem. 1970 Dec 25;245(24):6616–6623. [PubMed] [Google Scholar]
  35. Lippincott-Schwartz J., Bonifacino J. S., Yuan L. C., Klausner R. D. Degradation from the endoplasmic reticulum: disposing of newly synthesized proteins. Cell. 1988 Jul 15;54(2):209–220. doi: 10.1016/0092-8674(88)90553-3. [DOI] [PubMed] [Google Scholar]
  36. Mayer R. J., Lowe J., Lennox G., Landon M., MacLennan K., Doherty F. J. Intermediate filament-ubiquitin diseases: implications for cell sanitization. Biochem Soc Symp. 1989;55:193–201. [PubMed] [Google Scholar]
  37. McElligott M. A., Miao P., Dice J. F. Lysosomal degradation of ribonuclease A and ribonuclease S-protein microinjected into the cytosol of human fibroblasts. J Biol Chem. 1985 Oct 5;260(22):11986–11993. [PubMed] [Google Scholar]
  38. Metzler H., Gebhardt R., Oberrauch W., Mecke D. A convenient and highly sensitive spectrophotometric assay for tryptophan 2,3-dioxygenase. Anal Biochem. 1982 Mar 15;121(1):10–16. doi: 10.1016/0003-2697(82)90550-4. [DOI] [PubMed] [Google Scholar]
  39. Mortimore G. E., Schworer C. M. Induction of autophagy by amino-acid deprivation in perfused rat liver. Nature. 1977 Nov 10;270(5633):174–176. doi: 10.1038/270174a0. [DOI] [PubMed] [Google Scholar]
  40. Pfeifer U. Inhibition by insulin of the formation of autophagic vacuoles in rat liver. A morphometric approach to the kinetics of intracellular degradation by autophagy. J Cell Biol. 1978 Jul;78(1):152–167. doi: 10.1083/jcb.78.1.152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Plomp P. J., Gordon P. B., Meijer A. J., Høyvik H., Seglen P. O. Energy dependence of different steps in the autophagic-lysosomal pathway. J Biol Chem. 1989 Apr 25;264(12):6699–6704. [PubMed] [Google Scholar]
  42. Poli A., Gordon P. B., Schwarze P. E., Grinde B., Seglen P. O. Effects of insulin and anchorage on hepatocytic protein metabolism and amino acid transport. J Cell Sci. 1981 Apr;48:1–18. doi: 10.1242/jcs.48.1.1. [DOI] [PubMed] [Google Scholar]
  43. Pontremoli S., Melloni E., Michetti M., Salamino F., Sparatore B., Horecker B. L. An endogenous activator of the Ca2+-dependent proteinase of human neutrophils that increases its affinity for Ca2+. Proc Natl Acad Sci U S A. 1988 Mar;85(6):1740–1743. doi: 10.1073/pnas.85.6.1740. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Pösö A. R., Wert J. J., Jr, Mortimore G. E. Multifunctional control of amino acids of deprivation-induced proteolysis in liver. Role of leucine. J Biol Chem. 1982 Oct 25;257(20):12114–12120. [PubMed] [Google Scholar]
  45. Rivett A. J. The multicatalytic proteinase of mammalian cells. Arch Biochem Biophys. 1989 Jan;268(1):1–8. doi: 10.1016/0003-9861(89)90558-4. [DOI] [PubMed] [Google Scholar]
  46. Rudek D. E., Dien P. Y., Schneider D. L. Identification of tryptophan pyrrolase in liver lysosomes after treatment of rats with hydrocortisone and chloroquine. Biochem Biophys Res Commun. 1978 May 15;82(1):342–347. doi: 10.1016/0006-291x(78)90615-0. [DOI] [PubMed] [Google Scholar]
  47. Russell D. H., Snyder S. H. Amine synthesis in regenerating rat liver: extremely rapid turnover of ornithine decarboxylase. Mol Pharmacol. 1969 May;5(3):253–262. [PubMed] [Google Scholar]
  48. Russell D., Snyder S. H. Amine synthesis in rapidly growing tissues: ornithine decarboxylase activity in regenerating rat liver, chick embryo, and various tumors. Proc Natl Acad Sci U S A. 1968 Aug;60(4):1420–1427. doi: 10.1073/pnas.60.4.1420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. SCHIMKE R. T., SWEENEY E. W., BERLIN C. M. THE ROLES OF SYNTHESIS AND DEGRADATION IN THE CONTROL OF RAT LIVER TRYPTOPHAN PYRROLASE. J Biol Chem. 1965 Jan;240:322–331. [PubMed] [Google Scholar]
  50. SELIM A. S., GREENBERG D. M. An enzyme that synthesizes cystathionine and deaminates L-serine. J Biol Chem. 1959 Jun;234(6):1474–1480. [PubMed] [Google Scholar]
  51. Sato A., Khan K. M., Natori Y., Okada M. Degradation of aspartate aminotransferase in rat liver lysosomes. Biochem Biophys Res Commun. 1988 Dec 15;157(2):440–442. doi: 10.1016/s0006-291x(88)80268-7. [DOI] [PubMed] [Google Scholar]
  52. Seglen P. O., Gordon P. B. 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci U S A. 1982 Mar;79(6):1889–1892. doi: 10.1073/pnas.79.6.1889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Seglen P. O., Gordon P. B. Amino acid control of autophagic sequestration and protein degradation in isolated rat hepatocytes. J Cell Biol. 1984 Aug;99(2):435–444. doi: 10.1083/jcb.99.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Seglen P. O., Gordon P. B., Grinde B., Solheim A., Kovács A. L., Poli A. Inhibitors and pathways of hepatocytic protein degradation. Acta Biol Med Ger. 1981;40(10-11):1587–1598. [PubMed] [Google Scholar]
  55. Seglen P. O., Gordon P. B., Høyvik H. Radiolabelled sugars as probes of hepatocytic autophagy. Biomed Biochim Acta. 1986;45(11-12):1647–1656. [PubMed] [Google Scholar]
  56. Seglen P. O., Gordon P. B., Poli A. Amino acid inhibition of the autophagic/lysosomal pathway of protein degradation in isolated rat hepatocytes. Biochim Biophys Acta. 1980 Jun 5;630(1):103–118. doi: 10.1016/0304-4165(80)90141-5. [DOI] [PubMed] [Google Scholar]
  57. Seglen P. O., Gordon P. B., Tolleshaug H., Høyvik H. Use of [3H]raffinose as a specific probe of autophagic sequestration. Exp Cell Res. 1986 Jan;162(1):273–277. doi: 10.1016/0014-4827(86)90446-5. [DOI] [PubMed] [Google Scholar]
  58. Seglen P. O., Grinde B., Solheim A. E. Inhibition of the lysosomal pathway of protein degradation in isolated rat hepatocytes by ammonia, methylamine, chloroquine and leupeptin. Eur J Biochem. 1979 Apr 2;95(2):215–225. doi: 10.1111/j.1432-1033.1979.tb12956.x. [DOI] [PubMed] [Google Scholar]
  59. Seglen P. O. Inhibitors of lysosomal function. Methods Enzymol. 1983;96:737–764. doi: 10.1016/s0076-6879(83)96063-9. [DOI] [PubMed] [Google Scholar]
  60. Seglen P. O., Jervell K. F. A simple perfusion technique applied to glucocorticoid regulation of tryptophan oxygenase turnover and bile production in the isolated rat liver. Hoppe Seylers Z Physiol Chem. 1969 Mar;350(3):308–316. doi: 10.1515/bchm2.1969.350.1.308. [DOI] [PubMed] [Google Scholar]
  61. Seglen P. O. Preparation of isolated rat liver cells. Methods Cell Biol. 1976;13:29–83. doi: 10.1016/s0091-679x(08)61797-5. [DOI] [PubMed] [Google Scholar]
  62. Seglen P. O., Solheim A. E. Conversion of dense lysosomes into light lysosomes during hepatocytic autophagy. Exp Cell Res. 1985 Apr;157(2):550–555. doi: 10.1016/0014-4827(85)90141-7. [DOI] [PubMed] [Google Scholar]
  63. Sibrowski W., Seitz H. J. Hepatic glucokinase turnover in intact and adrenalectomized rats in vivo. Eur J Biochem. 1980 Dec;113(1):121–129. doi: 10.1111/j.1432-1033.1980.tb06146.x. [DOI] [PubMed] [Google Scholar]
  64. Sibrowski W., Staegemann U., Seitz H. J. Accelerated turnover of hepatic glucokinase in starved and streptozotocin-diabetic rat. Eur J Biochem. 1982 Oct;127(3):571–574. doi: 10.1111/j.1432-1033.1982.tb06910.x. [DOI] [PubMed] [Google Scholar]
  65. Slot L. A., Lauridsen A. M., Hendil K. B. Intracellular protein degradation in serum-deprived human fibroblasts. Biochem J. 1986 Jul 15;237(2):491–498. doi: 10.1042/bj2370491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Szepesi B., Freedland R. A. A possible method for estimating hormone effects on enzyme synthesis. Arch Biochem Biophys. 1969 Aug;133(1):60–69. doi: 10.1016/0003-9861(69)90488-3. [DOI] [PubMed] [Google Scholar]
  67. Vargas J. L., Roche E., Knecht E., Grisolía S. Differences in the half-lives of some mitochondrial rat liver enzymes may derive partially from hepatocyte heterogeneity. FEBS Lett. 1987 Nov 16;224(1):182–186. doi: 10.1016/0014-5793(87)80444-1. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES