Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1990 Sep 1;111(3):901–907. doi: 10.1083/jcb.111.3.901

Parafusin, an exocytic-sensitive phosphoprotein, is the primary acceptor for the glucosylphosphotransferase in Paramecium tetraurelia and rat liver

PMCID: PMC2116299  PMID: 2167899

Abstract

Parafusin, the major protein in Paramecium tetraurelia to undergo dephosphorylation in response to secretory stimuli, appears to be the primary acceptor for the glucosylphosphotransferase in this species based on five independent criteria: identical molecular size of 63 kD; identical isoelectric points in the phosphorylated state of pH 5.8 and 6.2; identical behavior in reverse-phase chromatography; immunological cross-reactivity with an affinity-purified anti-parafusin antibody; the presence of a phosphorylated sugar after acid hydrolysis. It appears likely that the dephosphorylation observed with secretion reflects the removal of alpha Glc-1-P from parafusin's oligosaccharides and is consistent, therefore, with a regulatory role for this cytoplasmic glycosylation event. The glucosylphosphotransferase acceptor in rat liver is also immunoprecipitated by the anti-parafusin antibody and is very similar in physical characteristics to the paramecium protein. This conservation suggests a role for parafusin in mammalian exocytosis as well, at a step common to both the regulated and constitutive secretory pathways.

Full Text

The Full Text of this article is available as a PDF (976.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amy C. M., Kirshner N. Phosphorylation of adrenal medulla cell proteins in conjunction with stimulation of catecholamine secretion. J Neurochem. 1981 Mar;36(3):847–854. doi: 10.1111/j.1471-4159.1981.tb01671.x. [DOI] [PubMed] [Google Scholar]
  2. Burgoyne R. D. Mechanisms of secretion from adrenal chromaffin cells. Biochim Biophys Acta. 1984 Jun 25;779(2):201–216. doi: 10.1016/0304-4157(84)90009-1. [DOI] [PubMed] [Google Scholar]
  3. Cohen P. The structure and regulation of protein phosphatases. Annu Rev Biochem. 1989;58:453–508. doi: 10.1146/annurev.bi.58.070189.002321. [DOI] [PubMed] [Google Scholar]
  4. Davis L. I., Blobel G. Nuclear pore complex contains a family of glycoproteins that includes p62: glycosylation through a previously unidentified cellular pathway. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7552–7556. doi: 10.1073/pnas.84.21.7552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dunkley P. R., Baker C. M., Robinson P. J. Depolarization-dependent protein phosphorylation in rat cortical synaptosomes: characterization of active protein kinases by phosphopeptide analysis of substrates. J Neurochem. 1986 Jun;46(6):1692–1703. doi: 10.1111/j.1471-4159.1986.tb08486.x. [DOI] [PubMed] [Google Scholar]
  6. Gilligan D. M., Satir B. H. Protein phosphorylation/dephosphorylation and stimulus-secretion coupling in wild type and mutant Paramecium. J Biol Chem. 1982 Dec 10;257(23):13903–13906. [PubMed] [Google Scholar]
  7. Gilligan D. M., Satir B. H. Stimulation and inhibition of secretion in Paramecium: role of divalent cations. J Cell Biol. 1983 Jul;97(1):224–234. doi: 10.1083/jcb.97.1.224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Greengard P. Neuronal phosphoproteins. Mediators of signal transduction. Mol Neurobiol. 1987 Spring-Summer;1(1-2):81–119. doi: 10.1007/BF02935265. [DOI] [PubMed] [Google Scholar]
  9. Gutierrez L. M., Ballesta J. J., Hidalgo M. J., Gandia L., García A. G., Reig J. A. A two-dimensional electrophoresis study of phosphorylation and dephosphorylation of chromaffin cell proteins in response to a secretory stimulus. J Neurochem. 1988 Oct;51(4):1023–1030. doi: 10.1111/j.1471-4159.1988.tb03063.x. [DOI] [PubMed] [Google Scholar]
  10. Hart G. W., Haltiwanger R. S., Holt G. D., Kelly W. G. Glycosylation in the nucleus and cytoplasm. Annu Rev Biochem. 1989;58:841–874. doi: 10.1146/annurev.bi.58.070189.004205. [DOI] [PubMed] [Google Scholar]
  11. Hiller A. M., Koro L. A., Marchase R. B. Glucose-1-phosphotransferase and N-acetylglucosamine-1-phosphotransferase have distinct acceptor specificities. J Biol Chem. 1987 Mar 25;262(9):4377–4381. [PubMed] [Google Scholar]
  12. Kelly W. G., Hart G. W. Glycosylation of chromosomal proteins: localization of O-linked N-acetylglucosamine in Drosophila chromatin. Cell. 1989 Apr 21;57(2):243–251. doi: 10.1016/0092-8674(89)90962-8. [DOI] [PubMed] [Google Scholar]
  13. Koro L. A., Marchase R. B. A UDP-glucose:glycoprotein glucose-1-phosphotransferase in embryonic chicken neural retina. Cell. 1982 Dec;31(3 Pt 2):739–748. doi: 10.1016/0092-8674(82)90328-2. [DOI] [PubMed] [Google Scholar]
  14. Lee S. A., Holz R. W. Protein phosphorylation and secretion in digitonin-permeabilized adrenal chromaffin cells. Effects of micromolar Ca2+, phorbol esters, and diacylglycerol. J Biol Chem. 1986 Dec 25;261(36):17089–17098. [PubMed] [Google Scholar]
  15. Marchase R. B., Richardson K. L., Srisomsap C., Drake R. R., Haley B. E. Resolution of phosphoglucomatase and the 62-kDA acceptor for the glucosylphosphotransferase. Arch Biochem Biophys. 1990 Jul;280(1):122–129. doi: 10.1016/0003-9861(90)90526-5. [DOI] [PubMed] [Google Scholar]
  16. Marchase R. B., Saunders A. M., Rivera A. A., Cook J. M. The beta-phosphoro[35S]thioate analogue of UDP-Glc is efficiently utilized by the glucose phosphotransferase and is relatively resistant to hydrolytic degradation. Biochim Biophys Acta. 1987 Nov 26;916(2):157–162. doi: 10.1016/0167-4838(87)90103-8. [DOI] [PubMed] [Google Scholar]
  17. Murtaugh T. J., Gilligan D. M., Satir B. H. Purification of and production of an antibody against a 63,000 Mr stimulus-sensitive phosphoprotein in Paramecium. J Biol Chem. 1987 Nov 15;262(32):15734–15739. [PubMed] [Google Scholar]
  18. Ray W. J., Jr, Hermodson M. A., Puvathingal J. M., Mahoney W. C. The complete amino acid sequence of rabbit muscle phosphoglucomutase. J Biol Chem. 1983 Aug 10;258(15):9166–9174. [PubMed] [Google Scholar]
  19. Satir B. H., Busch G., Vuoso A., Murtaugh T. J. Aspects of signal transduction in stimulus exocytosis-coupling in Paramecium. J Cell Biochem. 1988 Apr;36(4):429–443. doi: 10.1002/jcb.240360411. [DOI] [PubMed] [Google Scholar]
  20. Satir B. H., Hamasaki T., Reichman M., Murtaugh T. J. Species distribution of a phosphoprotein (parafusin) involved in exocytosis. Proc Natl Acad Sci U S A. 1989 Feb;86(3):930–932. doi: 10.1073/pnas.86.3.930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Satir B. H. Signal transduction events associated with exocytosis in ciliates. J Protozool. 1989 Jul-Aug;36(4):382–389. doi: 10.1111/j.1550-7408.1989.tb05531.x. [DOI] [PubMed] [Google Scholar]
  22. Srisomsap C., Richardson K. L., Jay J. C., Marchase R. B. An alpha-glucose-1-phosphate phosphodiesterase is present in rat liver cytosol. J Biol Chem. 1989 Dec 5;264(34):20540–20546. [PubMed] [Google Scholar]
  23. Srisomsap C., Richardson K. L., Jay J. C., Marchase R. B. Localization of the glucose phosphotransferase to a cytoplasmically accessible site on intracellular membranes. J Biol Chem. 1988 Nov 25;263(33):17792–17797. [PubMed] [Google Scholar]
  24. Wang J. K., Walaas S. I., Greengard P. Protein phosphorylation in nerve terminals: comparison of calcium/calmodulin-dependent and calcium/diacylglycerol-dependent systems. J Neurosci. 1988 Jan;8(1):281–288. doi: 10.1523/JNEUROSCI.08-01-00281.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Whelan W. J. The initiation of glycogen synthesis. Bioessays. 1986 Sep;5(3):136–140. doi: 10.1002/bies.950050312. [DOI] [PubMed] [Google Scholar]
  26. Wu W. C., Walaas S. I., Nairn A. C., Greengard P. Calcium/phospholipid regulates phosphorylation of a Mr "87k" substrate protein in brain synaptosomes. Proc Natl Acad Sci U S A. 1982 Sep;79(17):5249–5253. doi: 10.1073/pnas.79.17.5249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Zieseniss E., Plattner H. Synchronous exocytosis in Paramecium cells involves very rapid (less than or equal to 1 s), reversible dephosphorylation of a 65-kD phosphoprotein in exocytosis-competent strains. J Cell Biol. 1985 Dec;101(6):2028–2035. doi: 10.1083/jcb.101.6.2028. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES