Abstract
Acetylcholine receptors become clustered at the neuromuscular junction during synaptogenesis, at least in part via lateral migration of diffusely expressed receptors. We have shown previously that electric fields initiate a specific receptor clustering event which is dependent on lateral migration in aneural muscle cell cultures (Stollberg, J., and S. E. Fraser. 1988. J. Cell Biol. 107:1397-1408). Subsequent work with this model system ruled out the possibility that the clustering event was triggered by increasing the receptor density beyond a critical threshold (Stollberg, J., and S. E. Fraser. 1990. J. Neurosci. 10:247-255). This leaves two possibilities: the clustering event could be triggered by the field-induced change in the density of some other molecule, or by a membrane voltage-sensitive mechanism (e.g., a voltage- gated calcium signal). Electromigration is a slow, linear process, while voltage-sensitive mechanisms respond in a rapid, nonlinear fashion. Because of this the two possibilities make different predictions about receptor clustering behavior in response to pulsed or alternating electric fields. In the present work we have studied subcellular calcium distributions, as well as receptor clustering, in response to such fields. Subcellular calcium distributions were quantified and found to be consistent with the predicted nonlinear response. Receptor clustering, however, behaves in accordance with the predictions of a linear response, consistent with the electromigration hypothesis. The experiments demonstrate that a local increase in calcium, or, more generally, a voltage-sensitive mechanism, is not sufficient and probably not necessary to trigger receptor clustering. Experiments with slowly alternating electric fields confirm the view that the clustering of acetylcholine receptors is initiated by a local change in the density of some non-receptor molecule.
Full Text
The Full Text of this article is available as a PDF (2.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Almers W., Neher E. The Ca signal from fura-2 loaded mast cells depends strongly on the method of dye-loading. FEBS Lett. 1985 Nov 11;192(1):13–18. doi: 10.1016/0014-5793(85)80033-8. [DOI] [PubMed] [Google Scholar]
- Anderson M. J., Cohen M. W. Nerve-induced and spontaneous redistribution of acetylcholine receptors on cultured muscle cells. J Physiol. 1977 Jul;268(3):757–773. doi: 10.1113/jphysiol.1977.sp011880. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bloch R. J., Pumplin D. W. Molecular events in synaptogenesis: nerve-muscle adhesion and postsynaptic differentiation. Am J Physiol. 1988 Mar;254(3 Pt 1):C345–C364. doi: 10.1152/ajpcell.1988.254.3.C345. [DOI] [PubMed] [Google Scholar]
- Brackenbury R., Rutishauser U., Edelman G. M. Distinct calcium-independent and calcium-dependent adhesion systems of chicken embryo cells. Proc Natl Acad Sci U S A. 1981 Jan;78(1):387–391. doi: 10.1073/pnas.78.1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davey D. F., Cohen M. W. Localization of acetylcholine receptors and cholinesterase on nerve-contacted and noncontacted muscle cells grown in the presence of agents that block action potentials. J Neurosci. 1986 Mar;6(3):673–680. doi: 10.1523/JNEUROSCI.06-03-00673.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frank E., Fischbach G. D. Early events in neuromuscular junction formation in vitro: induction of acetylcholine receptor clusters in the postsynaptic membrane and morphology of newly formed synapses. J Cell Biol. 1979 Oct;83(1):143–158. doi: 10.1083/jcb.83.1.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fraser S. E., Poo M. Development, maintenance, and modulation of patterned membrane topography: models based on the acetylcholine receptor. Curr Top Dev Biol. 1982;17(Pt 3):77–100. doi: 10.1016/s0070-2153(08)60519-0. [DOI] [PubMed] [Google Scholar]
- Godfrey E. W., Nitkin R. M., Wallace B. G., Rubin L. L., McMahan U. J. Components of Torpedo electric organ and muscle that cause aggregation of acetylcholine receptors on cultured muscle cells. J Cell Biol. 1984 Aug;99(2):615–627. doi: 10.1083/jcb.99.2.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grunwald G. B., Geller R. L., Lilien J. Enzymatic dissection of embryonic cell adhesive mechanisms. J Cell Biol. 1980 Jun;85(3):766–776. doi: 10.1083/jcb.85.3.766. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Henderson L. P., Smith M. A., Spitzer N. C. The absence of calcium blocks impulse-evoked release of acetylcholine but not de novo formation of functional neuromuscular synaptic contacts in culture. J Neurosci. 1984 Dec;4(12):3140–3150. doi: 10.1523/JNEUROSCI.04-12-03140.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang H. W. Mobility and diffusion in the plane of cell membrane. J Theor Biol. 1973 Jul;40(1):11–17. doi: 10.1016/0022-5193(73)90161-6. [DOI] [PubMed] [Google Scholar]
- Jaffe L. F. Electrophoresis along cell membranes. Nature. 1977 Feb 17;265(5595):600–602. doi: 10.1038/265600a0. [DOI] [PubMed] [Google Scholar]
- Jaffe L. F., Nuccitelli R. Electrical controls of development. Annu Rev Biophys Bioeng. 1977;6:445–476. doi: 10.1146/annurev.bb.06.060177.002305. [DOI] [PubMed] [Google Scholar]
- Kuromi H., Kidokoro Y. Nerve disperses preexisting acetylcholine receptor clusters prior to induction of receptor accumulation in Xenopus muscle cultures. Dev Biol. 1984 May;103(1):53–61. doi: 10.1016/0012-1606(84)90006-x. [DOI] [PubMed] [Google Scholar]
- Lin-Liu S., Adey W. R., Poo M. M. Migration of cell surface concanavalin A receptors in pulsed electric fields. Biophys J. 1984 Jun;45(6):1211–1217. doi: 10.1016/S0006-3495(84)84270-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McLaughlin S., Poo M. M. The role of electro-osmosis in the electric-field-induced movement of charged macromolecules on the surfaces of cells. Biophys J. 1981 Apr;34(1):85–93. doi: 10.1016/S0006-3495(81)84838-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peng H. B., Cheng P. C., Luther P. W. Formation of ACh receptor clusters induced by positively charged latex beads. Nature. 1981 Aug 27;292(5826):831–834. doi: 10.1038/292831a0. [DOI] [PubMed] [Google Scholar]
- Peng H. B. Participation of calcium and calmodulin in the formation of acetylcholine receptor clusters. J Cell Biol. 1984 Feb;98(2):550–557. doi: 10.1083/jcb.98.2.550. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Poo M. M., Young S. H. Diffusional and electrokinetic redistribution at the synapse: a physicochemical basis of synaptic competition. J Neurobiol. 1990 Jan;21(1):157–168. doi: 10.1002/neu.480210111. [DOI] [PubMed] [Google Scholar]
- Poo M. In situ electrophoresis of membrane components. Annu Rev Biophys Bioeng. 1981;10:245–276. doi: 10.1146/annurev.bb.10.060181.001333. [DOI] [PubMed] [Google Scholar]
- Ravdin P., Axelrod D. Fluorescent tetramethyl rhodamine derivatives of alpha-bungarotoxin: preparation, separation, and characterization. Anal Biochem. 1977 Jun;80(2):585–592. doi: 10.1016/0003-2697(77)90682-0. [DOI] [PubMed] [Google Scholar]
- Rochlin M. W., Peng H. B. Localization of intracellular proteins at acetylcholine receptor clusters induced by electric fields in Xenopus muscle cells. J Cell Sci. 1989 Sep;94(Pt 1):73–83. doi: 10.1242/jcs.94.1.73. [DOI] [PubMed] [Google Scholar]
- Role L. W., Matossian V. R., O'Brien R. J., Fischbach G. D. On the mechanism of acetylcholine receptor accumulation at newly formed synapses on chick myotubes. J Neurosci. 1985 Aug;5(8):2197–2204. doi: 10.1523/JNEUROSCI.05-08-02197.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schuetze S. M., Role L. W. Developmental regulation of nicotinic acetylcholine receptors. Annu Rev Neurosci. 1987;10:403–457. doi: 10.1146/annurev.ne.10.030187.002155. [DOI] [PubMed] [Google Scholar]
- Stollberg J., Fraser S. E. Acetylcholine receptors and concanavalin A-binding sites on cultured Xenopus muscle cells: electrophoresis, diffusion, and aggregation. J Cell Biol. 1988 Oct;107(4):1397–1408. doi: 10.1083/jcb.107.4.1397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stollberg J., Fraser S. E. Local accumulation of acetylcholine receptors is neither necessary nor sufficient to induce cluster formation. J Neurosci. 1990 Jan;10(1):247–255. doi: 10.1523/JNEUROSCI.10-01-00247.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takeichi M. Functional correlation between cell adhesive properties and some cell surface proteins. J Cell Biol. 1977 Nov;75(2 Pt 1):464–474. doi: 10.1083/jcb.75.2.464. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Usdin T. B., Fischbach G. D. Purification and characterization of a polypeptide from chick brain that promotes the accumulation of acetylcholine receptors in chick myotubes. J Cell Biol. 1986 Aug;103(2):493–507. doi: 10.1083/jcb.103.2.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wallace B. G. Regulation of agrin-induced acetylcholine receptor aggregation by Ca++ and phorbol ester. J Cell Biol. 1988 Jul;107(1):267–278. doi: 10.1083/jcb.107.1.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhu D. L., Peng H. B. Increase in intracellular calcium induced by the polycation-coated latex bead, a stimulus that causes postsynaptic-type differentiation in cultured Xenopus muscle cells. Dev Biol. 1988 Mar;126(1):63–70. doi: 10.1016/0012-1606(88)90239-4. [DOI] [PubMed] [Google Scholar]
- Ziskind-Conhaim L., Geffen I., Hall Z. W. Redistribution of acetylcholine receptors on developing rat myotubes. J Neurosci. 1984 Sep;4(9):2346–2349. doi: 10.1523/JNEUROSCI.04-09-02346.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]