Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1990 Nov 1;111(5):1753–1762. doi: 10.1083/jcb.111.5.1753

The topoisomerase II inhibitor VM-26 induces marked changes in histone H1 kinase activity, histones H1 and H3 phosphorylation, and chromosome condensation in G2 phase and mitotic BHK cells

PMCID: PMC2116317  PMID: 2172257

Abstract

We have examined the effects of topoisomerase inhibitors on the phosphorylation of histones in chromatin during the G2 and the M phases of the cell cycle. Throughout the G2 phase of BHK cells, addition of the topoisomerase II inhibitor VM-26 prevented histone H1 phosphorylation, accompanied by the inhibition of intracellular histone H1 kinase activity. However, VM-26 had no inhibitory effect on the activity of the kinase in vitro, suggesting an indirect influence on histone H1 kinase activity. Entry into mitosis was also prevented, as monitored by the absence of nuclear lamina depolymerization, chromosome condensation, and histone H3 phosphorylation. In contrast, the topoisomerase I inhibitor, camptothecin, inhibited histone H1 phosphorylation and entry into mitosis only when applied at early G2. In cells that were arrested in mitosis, VM-26 induced dephosphorylation of histones H1 and H3, DNA breaks, and partial chromosome decondensation. These changes in chromatin parameters probably reverse the process of chromosome condensation, unfolding condensed regions to permit the repair of strand breaks in the DNA that were induced by VM- 26. The involvement of growth-associated histone H1 kinase in these processes raises the possibility that the cell detects breaks in the DNA through their effects on the state of DNA supercoiling in constrained domains or loops. It would appear that histone H1 kinase and topoisomerase II work coordinately in both chromosome condensation and decondensation, and that this process participates in the VM-26- induced G2 arrest of the cell.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ajiro K., Nishimoto T., Takahashi T. Histone H1 and H3 phosphorylation during premature chromosome condensation in a temperature-sensitive mutant (tsBN2) of baby hamster kidney cells. J Biol Chem. 1983 Apr 10;258(7):4534–4538. [PubMed] [Google Scholar]
  2. Arion D., Meijer L., Brizuela L., Beach D. cdc2 is a component of the M phase-specific histone H1 kinase: evidence for identity with MPF. Cell. 1988 Oct 21;55(2):371–378. doi: 10.1016/0092-8674(88)90060-8. [DOI] [PubMed] [Google Scholar]
  3. Bainbridge D. R., Macey M. M. Hoechst 33258: a fluorescent nuclear counterstain suitable for double-labelling immunofluorescence. J Immunol Methods. 1983 Aug 26;62(2):193–195. doi: 10.1016/0022-1759(83)90246-6. [DOI] [PubMed] [Google Scholar]
  4. Bradbury E. M., Inglis R. J., Matthews H. R. Control of cell division by very lysine rich histone (F1) phosphorylation. Nature. 1974 Feb 1;247(5439):257–261. doi: 10.1038/247257a0. [DOI] [PubMed] [Google Scholar]
  5. Bradbury E. M., Inglis R. J., Matthews H. R., Langan T. A. Molecular basis of control of mitotic cell division in eukaryotes. Nature. 1974 Jun 7;249(457):553–556. doi: 10.1038/249553a0. [DOI] [PubMed] [Google Scholar]
  6. Bradbury E. M., Inglis R. J., Matthews H. R., Sarner N. Phosphorylation of very-lysine-rich histone in Physarum polycephalum. Correlation with chromosome condensation. Eur J Biochem. 1973 Feb 15;33(1):131–139. doi: 10.1111/j.1432-1033.1973.tb02664.x. [DOI] [PubMed] [Google Scholar]
  7. Deffie A. M., Bosman D. J., Goldenberg G. J. Evidence for a mutant allele of the gene for DNA topoisomerase II in adriamycin-resistant P388 murine leukemia cells. Cancer Res. 1989 Dec 15;49(24 Pt 1):6879–6882. [PubMed] [Google Scholar]
  8. Draetta G., Beach D. Activation of cdc2 protein kinase during mitosis in human cells: cell cycle-dependent phosphorylation and subunit rearrangement. Cell. 1988 Jul 1;54(1):17–26. doi: 10.1016/0092-8674(88)90175-4. [DOI] [PubMed] [Google Scholar]
  9. Dunphy W. G., Brizuela L., Beach D., Newport J. The Xenopus cdc2 protein is a component of MPF, a cytoplasmic regulator of mitosis. Cell. 1988 Jul 29;54(3):423–431. doi: 10.1016/0092-8674(88)90205-x. [DOI] [PubMed] [Google Scholar]
  10. Earnshaw W. C., Halligan N., Cooke C., Rothfield N. The kinetochore is part of the metaphase chromosome scaffold. J Cell Biol. 1984 Jan;98(1):352–357. doi: 10.1083/jcb.98.1.352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gautier J., Minshull J., Lohka M., Glotzer M., Hunt T., Maller J. L. Cyclin is a component of maturation-promoting factor from Xenopus. Cell. 1990 Feb 9;60(3):487–494. doi: 10.1016/0092-8674(90)90599-a. [DOI] [PubMed] [Google Scholar]
  12. Gautier J., Norbury C., Lohka M., Nurse P., Maller J. Purified maturation-promoting factor contains the product of a Xenopus homolog of the fission yeast cell cycle control gene cdc2+. Cell. 1988 Jul 29;54(3):433–439. doi: 10.1016/0092-8674(88)90206-1. [DOI] [PubMed] [Google Scholar]
  13. Gerhart J., Wu M., Cyert M., Kirschner M. M-phase promoting factors from eggs of Xenopus laevis. Cytobios. 1985;43(174S):335–347. [PubMed] [Google Scholar]
  14. Gerhart J., Wu M., Kirschner M. Cell cycle dynamics of an M-phase-specific cytoplasmic factor in Xenopus laevis oocytes and eggs. J Cell Biol. 1984 Apr;98(4):1247–1255. doi: 10.1083/jcb.98.4.1247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Glass D. B., Masaracchia R. A., Feramisco J. R., Kemp B. E. Isolation of phosphorylated peptides and proteins on ion exchange papers. Anal Biochem. 1978 Jul 1;87(2):566–575. doi: 10.1016/0003-2697(78)90707-8. [DOI] [PubMed] [Google Scholar]
  16. Grieder A., Maurer R., Stähelin H. Effect of an epipodophyllotoxin derivative (VP 16-213) on macromolecular synthesis and mitosis in mastocytoma cells in vitro. Cancer Res. 1974 Aug;34(8):1788–1793. [PubMed] [Google Scholar]
  17. Gurley L. R., Walters R. A., Tobey R. A. Histone phosphorylation in late interphase and mitosis. Biochem Biophys Res Commun. 1973 Feb 5;50(3):744–750. doi: 10.1016/0006-291x(73)91307-7. [DOI] [PubMed] [Google Scholar]
  18. Gurley L. R., Walters R. A., Tobey R. A. Sequential phsophorylation of histone subfractions in the Chinese hamster cell cycle. J Biol Chem. 1975 May 25;250(10):3936–3944. [PubMed] [Google Scholar]
  19. Hartwell L. H., Weinert T. A. Checkpoints: controls that ensure the order of cell cycle events. Science. 1989 Nov 3;246(4930):629–634. doi: 10.1126/science.2683079. [DOI] [PubMed] [Google Scholar]
  20. Hohmann P., Tobey R. A., Gurley L. R. Phosphorylation of distinct regions of f1 histone. Relationship to the cell cycle. J Biol Chem. 1976 Jun 25;251(12):3685–3692. [PubMed] [Google Scholar]
  21. Holm C., Goto T., Wang J. C., Botstein D. DNA topoisomerase II is required at the time of mitosis in yeast. Cell. 1985 Jun;41(2):553–563. doi: 10.1016/s0092-8674(85)80028-3. [DOI] [PubMed] [Google Scholar]
  22. Holm C., Stearns T., Botstein D. DNA topoisomerase II must act at mitosis to prevent nondisjunction and chromosome breakage. Mol Cell Biol. 1989 Jan;9(1):159–168. doi: 10.1128/mcb.9.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Inglis R. J., Langan T. A., Matthews H. R., Hardie D. G., Bradbury E. M. Advance of mitosis by histone phosphokinase. Exp Cell Res. 1976 Feb;97(2):418–425. doi: 10.1016/0014-4827(76)90634-0. [DOI] [PubMed] [Google Scholar]
  24. Jeggo P. A., Caldecott K., Pidsley S., Banks G. R. Sensitivity of Chinese hamster ovary mutants defective in DNA double strand break repair to topoisomerase II inhibitors. Cancer Res. 1989 Dec 15;49(24 Pt 1):7057–7063. [PubMed] [Google Scholar]
  25. Krishan A., Paika K., Frei E., 3rd Cytofluorometric studies on the action of podophyllotoxin and epipodophyllotoxins (VM-26, VP-16-213) on the cell cycle traverse of human lymphoblasts. J Cell Biol. 1975 Sep;66(3):521–530. doi: 10.1083/jcb.66.3.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Krystal G. W., Poccia D. L. Phosphorylation of cleavage stage histone H1 in mitotic and prematurely condensed chromosomes. Exp Cell Res. 1981 Jul;134(1):41–48. doi: 10.1016/0014-4827(81)90461-4. [DOI] [PubMed] [Google Scholar]
  27. Labbe J. C., Lee M. G., Nurse P., Picard A., Doree M. Activation at M-phase of a protein kinase encoded by a starfish homologue of the cell cycle control gene cdc2+. Nature. 1988 Sep 15;335(6187):251–254. doi: 10.1038/335251a0. [DOI] [PubMed] [Google Scholar]
  28. Lake R. S. Further characterization of the F1-histone phosphokinase of metaphase-arrested animal cells. J Cell Biol. 1973 Aug;58(2):317–331. doi: 10.1083/jcb.58.2.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lamb N. J., Fernandez A., Watrin A., Labbé J. C., Cavadore J. C. Microinjection of p34cdc2 kinase induces marked changes in cell shape, cytoskeletal organization, and chromatin structure in mammalian fibroblasts. Cell. 1990 Jan 12;60(1):151–165. doi: 10.1016/0092-8674(90)90725-t. [DOI] [PubMed] [Google Scholar]
  30. Langan T. A. Characterization of highly phosphorylated subcomponents of rat thymus H1 histone. J Biol Chem. 1982 Dec 25;257(24):14835–14846. [PubMed] [Google Scholar]
  31. Liu L. F. DNA topoisomerase poisons as antitumor drugs. Annu Rev Biochem. 1989;58:351–375. doi: 10.1146/annurev.bi.58.070189.002031. [DOI] [PubMed] [Google Scholar]
  32. Lücke-Huhle C. Alpha-irradiation-induced G2 delay: a period of cell recovery. Radiat Res. 1982 Feb;89(2):298–308. [PubMed] [Google Scholar]
  33. Lücke-Huhle C., Blakely E. A., Chang P. Y., Tobias C. A. Drastic G2 arrest in mammalian cells after irradiation with heavy-ion beams. Radiat Res. 1979 Jul;79(1):97–112. [PubMed] [Google Scholar]
  34. Masui Y., Markert C. L. Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. J Exp Zool. 1971 Jun;177(2):129–145. doi: 10.1002/jez.1401770202. [DOI] [PubMed] [Google Scholar]
  35. Misra N. C., Roberts D. W. Inhibition by 4'-demethyl-epipodophyllotoxin 9-(4,6-O-2-thenylidene-beta-D-glucopyranoside) of human lymphoblast cultures in G2 phase of the cell cycle. Cancer Res. 1975 Jan;35(1):99–105. [PubMed] [Google Scholar]
  36. Mueller R. D., Yasuda H., Bradbury E. M. Phosphorylation of histone H1 through the cell cycle of Physarum polycephalum. 24 sites of phosphorylation at metaphase. J Biol Chem. 1985 Apr 25;260(8):5081–5086. [PubMed] [Google Scholar]
  37. Newport J. Nuclear reconstitution in vitro: stages of assembly around protein-free DNA. Cell. 1987 Jan 30;48(2):205–217. doi: 10.1016/0092-8674(87)90424-7. [DOI] [PubMed] [Google Scholar]
  38. Newport J., Spann T. Disassembly of the nucleus in mitotic extracts: membrane vesicularization, lamin disassembly, and chromosome condensation are independent processes. Cell. 1987 Jan 30;48(2):219–230. doi: 10.1016/0092-8674(87)90425-9. [DOI] [PubMed] [Google Scholar]
  39. Nishimoto T. The 'BN2' gene, a regulator for the onset of chromosome condensation. Bioessays. 1988 Oct;9(4):121–124. doi: 10.1002/bies.950090405. [DOI] [PubMed] [Google Scholar]
  40. Olivieri G., Micheli A. Mitotic delay and repair in human lymphocytes. Mutat Res. 1983 Oct;122(1):65–72. doi: 10.1016/0165-7992(83)90144-6. [DOI] [PubMed] [Google Scholar]
  41. Pines J., Hunter T. Isolation of a human cyclin cDNA: evidence for cyclin mRNA and protein regulation in the cell cycle and for interaction with p34cdc2. Cell. 1989 Sep 8;58(5):833–846. doi: 10.1016/0092-8674(89)90936-7. [DOI] [PubMed] [Google Scholar]
  42. Rao A. P., Rao P. N. The cause of G2-arrest in Chinese hamster ovary cells treated with anticancer drugs. J Natl Cancer Inst. 1976 Nov;57(5):1139–1143. doi: 10.1093/jnci/57.5.1139. [DOI] [PubMed] [Google Scholar]
  43. Reynhout J. K., Smith L. D. Studies on the appearance and nature of a maturation-inducing factor in the cytoplasm of amphibian oocytes exposed to progesterone. Dev Biol. 1974 Jun;38(2):394–400. doi: 10.1016/0012-1606(74)90016-5. [DOI] [PubMed] [Google Scholar]
  44. Roed H., Vindelov L. L., Christensen I. J., Spang-Thomsen M., Hansen H. H. The effect of the two epipodophyllotoxin derivatives etoposide (VP-16) and teniposide (VM-26) on cell lines established from patients with small cell carcinoma of the lung. Cancer Chemother Pharmacol. 1987;19(1):16–20. doi: 10.1007/BF00296248. [DOI] [PubMed] [Google Scholar]
  45. Sullivan D. M., Glisson B. S., Hodges P. K., Smallwood-Kentro S., Ross W. E. Proliferation dependence of topoisomerase II mediated drug action. Biochemistry. 1986 Apr 22;25(8):2248–2256. doi: 10.1021/bi00356a060. [DOI] [PubMed] [Google Scholar]
  46. Sullivan D. M., Latham M. D., Ross W. E. Proliferation-dependent topoisomerase II content as a determinant of antineoplastic drug action in human, mouse, and Chinese hamster ovary cells. Cancer Res. 1987 Aug 1;47(15):3973–3979. [PubMed] [Google Scholar]
  47. Sullivan D. M., Latham M. D., Rowe T. C., Ross W. E. Purification and characterization of an altered topoisomerase II from a drug-resistant Chinese hamster ovary cell line. Biochemistry. 1989 Jun 27;28(13):5680–5687. doi: 10.1021/bi00439a051. [DOI] [PubMed] [Google Scholar]
  48. Uemura T., Ohkura H., Adachi Y., Morino K., Shiozaki K., Yanagida M. DNA topoisomerase II is required for condensation and separation of mitotic chromosomes in S. pombe. Cell. 1987 Sep 11;50(6):917–925. doi: 10.1016/0092-8674(87)90518-6. [DOI] [PubMed] [Google Scholar]
  49. Uemura T., Yanagida M. Isolation of type I and II DNA topoisomerase mutants from fission yeast: single and double mutants show different phenotypes in cell growth and chromatin organization. EMBO J. 1984 Aug;3(8):1737–1744. doi: 10.1002/j.1460-2075.1984.tb02040.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Vosberg H. P. DNA topoisomerases: enzymes that control DNA conformation. Curr Top Microbiol Immunol. 1985;114:19–102. doi: 10.1007/978-3-642-70227-3_2. [DOI] [PubMed] [Google Scholar]
  51. Wang J. C. DNA topoisomerases. Annu Rev Biochem. 1985;54:665–697. doi: 10.1146/annurev.bi.54.070185.003313. [DOI] [PubMed] [Google Scholar]
  52. Weinert T. A., Hartwell L. H. The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science. 1988 Jul 15;241(4863):317–322. doi: 10.1126/science.3291120. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES