Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1990 Nov 1;111(5):1867–1876. doi: 10.1083/jcb.111.5.1867

Isolation and characterization of the Fc receptor from the fetal yolk sac of the rat

PMCID: PMC2116321  PMID: 2146275

Abstract

The yolk sac of the fetal rat and the proximal small intestine of the neonatal rat selectively transport maternal IgG. IgG-Fc receptors are thought to mediate transport across the epithelium of both tissues. We used a mouse mAb (MC-39) against the 45-54-kD component of the Fc receptor of the neonatal intestine to find an antigenically related protein that might function as an Fc receptor in fetal yolk sac. In immunoblots of yolk sac, MC-39 recognized a protein band with apparent molecular mass of 54-58 kD. MC-39 bound to the endoderm of yolk sac in immunofluorescence studies. In immunogold-labeling experiments MC-39 was associated mainly with small vesicles in the apical cytoplasm and in the region near the basolateral membrane of endodermal cells. The MC- 39 cross-reactive protein and beta 2-microglobulin, a component of the intestinal Fc receptor, were copurified from detergent-solubilized yolk sac by an affinity purification that selected for proteins which, like the intestinal receptor, bound to IgG at pH 6.0 and eluted at pH 8.0. In summary, the data suggest that we have isolated the Fc receptor of the yolk sac and that this receptor is structurally and functionally related to the Fc receptor of the neonatal intestine. An unexpected finding is that, unlike the intestinal receptor which binds maternal IgG on the apical cell surface, the yolk sac receptor appears to bind IgG only within apical compartments which we suggest represent the endosomal complex.

Full Text

The Full Text of this article is available as a PDF (3.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRAMBELL F. W., HALLIDAY R., MORRIS I. G. Interference by human and bovine serum and serum protein fractions with the absorption of antibodies by suckling rats and mice. Proc R Soc Lond B Biol Sci. 1958 Jul 1;149(934):1–11. doi: 10.1098/rspb.1958.0046. [DOI] [PubMed] [Google Scholar]
  2. BRAMBELL F. W., HALLIDAY R. The route by which passive immunity is transmitted from mother to foetus in the rat. Proc R Soc Lond B Biol Sci. 1956 May 29;145(919):170–178. doi: 10.1098/rspb.1956.0024. [DOI] [PubMed] [Google Scholar]
  3. Berryman M. A., Rodewald R. D. An enhanced method for post-embedding immunocytochemical staining which preserves cell membranes. J Histochem Cytochem. 1990 Feb;38(2):159–170. doi: 10.1177/38.2.1688894. [DOI] [PubMed] [Google Scholar]
  4. Bjorkman P. J., Saper M. A., Samraoui B., Bennett W. S., Strominger J. L., Wiley D. C. Structure of the human class I histocompatibility antigen, HLA-A2. Nature. 1987 Oct 8;329(6139):506–512. doi: 10.1038/329506a0. [DOI] [PubMed] [Google Scholar]
  5. Chapman M. D., Sutherland W. M., Platts-Mills T. A. Recognition of two Dermatophagoides pteronyssinus-specific epitopes on antigen P1 by using monoclonal antibodies: binding to each epitope can be inhibited by serum from dust mite-allergic patients. J Immunol. 1984 Nov;133(5):2488–2495. [PubMed] [Google Scholar]
  6. Cobbs C. S., Jr, Shaw A. R., Hillman K., Schlamowitz M. Assay and partial characterization of detergent solubilized rabbit yolk sac membrane Fc receptors. J Immunol. 1980 Apr;124(4):1648–1655. [PubMed] [Google Scholar]
  7. Douglas G. C., King B. F. Effects of monensin on the receptor-mediated endocytosis of 125I-labelled IgG by guinea-pig yolk sac in vitro. Placenta. 1988 May-Jun;9(3):277–288. doi: 10.1016/0143-4004(88)90035-5. [DOI] [PubMed] [Google Scholar]
  8. Dunn S. D. Effects of the modification of transfer buffer composition and the renaturation of proteins in gels on the recognition of proteins on Western blots by monoclonal antibodies. Anal Biochem. 1986 Aug 15;157(1):144–153. doi: 10.1016/0003-2697(86)90207-1. [DOI] [PubMed] [Google Scholar]
  9. Engvall E., Perlmann P. Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry. 1971 Sep;8(9):871–874. doi: 10.1016/0019-2791(71)90454-x. [DOI] [PubMed] [Google Scholar]
  10. Evans E. M., Wrigglesworth J. M., Burdett K., Pover W. F. Studies on epithelial cells isolated from guinea pig small intestine. J Cell Biol. 1971 Nov;51(21):452–464. doi: 10.1083/jcb.51.2.452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Forstner G. G., Sabesin S. M., Isselbacher K. J. Rat intestinal microvillus membranes. Purification and biochemical characterization. Biochem J. 1968 Jan;106(2):381–390. doi: 10.1042/bj1060381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gatt S. Enzymic hydrolysis of sphingolipids: Hydrolysis of ceramide glucoside by an enzyme from ox brain. Biochem J. 1966 Dec;101(3):687–691. [PMC free article] [PubMed] [Google Scholar]
  13. Geuze H. J., Slot J. W., Strous G. J., Lodish H. F., Schwartz A. L. Intracellular site of asialoglycoprotein receptor-ligand uncoupling: double-label immunoelectron microscopy during receptor-mediated endocytosis. Cell. 1983 Jan;32(1):277–287. doi: 10.1016/0092-8674(83)90518-4. [DOI] [PubMed] [Google Scholar]
  14. Giloh H., Sedat J. W. Fluorescence microscopy: reduced photobleaching of rhodamine and fluorescein protein conjugates by n-propyl gallate. Science. 1982 Sep 24;217(4566):1252–1255. doi: 10.1126/science.7112126. [DOI] [PubMed] [Google Scholar]
  15. Gorbsky G., Borisy G. G. Reversible embedment cytochemistry (REC): a versatile method for the ultrastructural analysis and affinity labeling of tissue sections. J Histochem Cytochem. 1986 Feb;34(2):177–188. doi: 10.1177/34.2.3511139. [DOI] [PubMed] [Google Scholar]
  16. Griffiths G., Back R., Marsh M. A quantitative analysis of the endocytic pathway in baby hamster kidney cells. J Cell Biol. 1989 Dec;109(6 Pt 1):2703–2720. doi: 10.1083/jcb.109.6.2703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hartree E. F. Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem. 1972 Aug;48(2):422–427. doi: 10.1016/0003-2697(72)90094-2. [DOI] [PubMed] [Google Scholar]
  18. Hatae T., Fujita M., Okuyama K. Study on the origin of apical tubules in ileal absorptive cells of suckling rats using concanavalin-A as a membrane-bound tracer. Cell Tissue Res. 1988 Mar;251(3):511–521. doi: 10.1007/BF00213998. [DOI] [PubMed] [Google Scholar]
  19. Hatae T., Fujita M., Sagara H. Helical structure in the apical tubules of several absorbing epithelia. Kidney proximal tubule, visceral yolk sac and ductuli efferentes. Cell Tissue Res. 1986;244(1):39–46. doi: 10.1007/BF00218379. [DOI] [PubMed] [Google Scholar]
  20. Herring B. P., Stull J. T., Gallagher P. J. Domain characterization of rabbit skeletal muscle myosin light chain kinase. J Biol Chem. 1990 Jan 25;265(3):1724–1730. [PMC free article] [PubMed] [Google Scholar]
  21. Hunziker W., Mellman I. Expression of macrophage-lymphocyte Fc receptors in Madin-Darby canine kidney cells: polarity and transcytosis differ for isoforms with or without coated pit localization domains. J Cell Biol. 1989 Dec;109(6 Pt 2):3291–3302. doi: 10.1083/jcb.109.6.3291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Johanson R. A., French M. D., Schlamowitz M. Assay and characterization of IgG binding to endodermal cells of the fetal rabbit yolk sac membrane. J Immunol Methods. 1985 Nov 28;84(1-2):221–233. doi: 10.1016/0022-1759(85)90429-6. [DOI] [PubMed] [Google Scholar]
  23. KELLENBERGER E., RYTER A., SECHAUD J. Electron microscope study of DNA-containing plasms. II. Vegetative and mature phage DNA as compared with normal bacterial nucleoids in different physiological states. J Biophys Biochem Cytol. 1958 Nov 25;4(6):671–678. doi: 10.1083/jcb.4.6.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. King B. F., Enders A. C. Protein absorption and transport by the guinea pig visceral yolk sac placenta. Am J Anat. 1970 Nov;129(3):261–287. doi: 10.1002/aja.1001290303. [DOI] [PubMed] [Google Scholar]
  25. King B. F. The role of coated vesicles in selective transfer across yolk sac epithelium. J Ultrastruct Res. 1982 Jun;79(3):273–284. doi: 10.1016/s0022-5320(82)90003-x. [DOI] [PubMed] [Google Scholar]
  26. Kugler P., Miki A. Study on membrane recycling in the rat visceral yolk-sac endoderm using concanavalin-A conjugates. Histochemistry. 1985;83(4):359–367. doi: 10.1007/BF00684383. [DOI] [PubMed] [Google Scholar]
  27. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  28. Lambson R. O. An electron microscopic visualization of transport across rat visceral yolk sac. Am J Anat. 1966 Jan;118(1):21–52. doi: 10.1002/aja.1001180104. [DOI] [PubMed] [Google Scholar]
  29. McLean I. W., Nakane P. K. Periodate-lysine-paraformaldehyde fixative. A new fixation for immunoelectron microscopy. J Histochem Cytochem. 1974 Dec;22(12):1077–1083. doi: 10.1177/22.12.1077. [DOI] [PubMed] [Google Scholar]
  30. Mellman I., Fuchs R., Helenius A. Acidification of the endocytic and exocytic pathways. Annu Rev Biochem. 1986;55:663–700. doi: 10.1146/annurev.bi.55.070186.003311. [DOI] [PubMed] [Google Scholar]
  31. Miettinen H. M., Rose J. K., Mellman I. Fc receptor isoforms exhibit distinct abilities for coated pit localization as a result of cytoplasmic domain heterogeneity. Cell. 1989 Jul 28;58(2):317–327. doi: 10.1016/0092-8674(89)90846-5. [DOI] [PubMed] [Google Scholar]
  32. Mooseker M. S., Pollard T. D., Fujiwara K. Characterization and localization of myosin in the brush border of intestinal epithelial cells. J Cell Biol. 1978 Nov;79(2 Pt 1):444–453. doi: 10.1083/jcb.79.2.444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Moxon L. A., Wild A. E. Localisation of proteins in coated micropinocytotic vesicles during transport across rabbit yolk sac endoderm. Cell Tissue Res. 1976 Aug 20;171(2):175–193. doi: 10.1007/BF00219405. [DOI] [PubMed] [Google Scholar]
  34. Nakamuro K., Tanigaki N., Pressman D. Multiple common properties of human beta2-microglobulin and the common portion fragment derived from HL-A antigen molecules. Proc Natl Acad Sci U S A. 1973 Oct;70(10):2863–2865. doi: 10.1073/pnas.70.10.2863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Padykula H. A., Deren J. J., Wilson T. H. Development of structure and function in the mammalian yolk sac. I. Developmental morphology and vitamin B12 uptake of the rat yolk sac. Dev Biol. 1966 Jun;13(3):311–348. doi: 10.1016/0012-1606(66)90053-4. [DOI] [PubMed] [Google Scholar]
  36. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rodewald R., Abrahamson D. R. Receptor-mediated transport of IgG across the intestinal epithelium of the neonatal rat. Ciba Found Symp. 1982;(92):209–232. doi: 10.1002/9780470720745.ch11. [DOI] [PubMed] [Google Scholar]
  38. Rodewald R., Kraehenbuhl J. P. Receptor-mediated transport of IgG. J Cell Biol. 1984 Jul;99(1 Pt 2):159s–164s. doi: 10.1083/jcb.99.1.159s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Rodewald R. pH-dependent binding of immunoglobulins to intestinal cells of the neonatal rat. J Cell Biol. 1976 Nov;71(2):666–669. doi: 10.1083/jcb.71.2.666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Salzman N. H., Maxfield F. R. Fusion accessibility of endocytic compartments along the recycling and lysosomal endocytic pathways in intact cells. J Cell Biol. 1989 Nov;109(5):2097–2104. doi: 10.1083/jcb.109.5.2097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Seibel W. An ultrastructural comparison of the uptake and transport of horseradish peroxidase by the rat visceral yolk-sac placenta during mid- and late gestation. Am J Anat. 1974 Jun;140(2):213–235. doi: 10.1002/aja.1001400208. [DOI] [PubMed] [Google Scholar]
  42. Shulman M., Wilde C. D., Köhler G. A better cell line for making hybridomas secreting specific antibodies. Nature. 1978 Nov 16;276(5685):269–270. doi: 10.1038/276269a0. [DOI] [PubMed] [Google Scholar]
  43. Simister N. E., Mostov K. E. An Fc receptor structurally related to MHC class I antigens. Nature. 1989 Jan 12;337(6203):184–187. doi: 10.1038/337184a0. [DOI] [PubMed] [Google Scholar]
  44. Slade B. S. An attempt to visualize protein transmission across the rabbit visceral yolk-sac. J Anat. 1970 Nov;107(Pt 3):531–545. [PMC free article] [PubMed] [Google Scholar]
  45. Stuart S. G., Simister N. E., Clarkson S. B., Kacinski B. M., Shapiro M., Mellman I. Human IgG Fc receptor (hFcRII; CD32) exists as multiple isoforms in macrophages, lymphocytes and IgG-transporting placental epithelium. EMBO J. 1989 Dec 1;8(12):3657–3666. doi: 10.1002/j.1460-2075.1989.tb08540.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Tressler R. L., Roth T. F. IgG receptors on the embryonic chick yolk sac. J Biol Chem. 1987 Nov 15;262(32):15406–15412. [PubMed] [Google Scholar]
  48. WISLOCKI G. B., PADYKULA H. A. Reichert's membrane and the yolk sac of the rat investigated by histochemical means. Am J Anat. 1953 Jan;92(1):117–150. doi: 10.1002/aja.1000920104. [DOI] [PubMed] [Google Scholar]
  49. Williams K. E., Kidston E. M., Beck F., Lloyd J. B. Quantitative studies of pinocytosis. II. Kinetics of protein uptake and digestion by rat yolk sac cultured in vitro. J Cell Biol. 1975 Jan;64(1):123–134. doi: 10.1083/jcb.64.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES