Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1990 Nov 1;111(5):1839–1847. doi: 10.1083/jcb.111.5.1839

Evidence that proteolysis of the surface is an initial step in the mechanism of formation of sperm cell surface domains

PMCID: PMC2116336  PMID: 2229175

Abstract

On terminally differentiated sperm cells, surface proteins are segregated into distinct surface domains that include the anterior and posterior head domains. We have analyzed the formation of the anterior and posterior head domains of guinea pig sperm in terms of both the timing of protein localization and the mechanism(s) responsible. On testicular sperm, the surface proteins PH-20, PH-30 and AH-50 were found to be present on the whole cell (PH-20) or whole head surface (PH- 30, AH-50). On sperm that have completed differentiation (cauda epididymal sperm), PH-20 and PH-30 proteins were restricted to the posterior head domain and AH-50 was restricted to the anterior head domain. Thus these proteins become restricted in their distribution late in sperm differentiation, after sperm leave the testis. We discovered that the differentiation process that localizes these proteins can be mimicked in vitro by treating testicular sperm with trypsin. After testicular sperm were treated with 20 micrograms/ml trypsin for 5 min at room temperature, PH-20, PH-30, and AH-50 were found localized to the same domains to which they are restricted during in vivo differentiation. The in vitro trypsin-induced localization of PH-20 to the posterior head mimicked the in vivo differentiation process quantitatively as well as qualitatively. The quantitative analysis showed the process of PH-20 localization involves the migration of surface PH-20 from other regions to the posterior head domain. Immunoprecipitation experiments confirmed that there is protease action in vivo on the sperm surface during the late stages of sperm differentiation. Both the PH-20 and PH-30 proteins were shown to be proteolytically cleaved late in sperm differentiation. These findings strongly implicate proteolysis of surface molecules as an initial step in the mechanism of formation of sperm head surface domains.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson M. J., Cohen M. W. Nerve-induced and spontaneous redistribution of acetylcholine receptors on cultured muscle cells. J Physiol. 1977 Jul;268(3):757–773. doi: 10.1113/jphysiol.1977.sp011880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bearer E. L., Friend D. S. Modifications of anionic-lipid domains preceding membrane fusion in guinea pig sperm. J Cell Biol. 1982 Mar;92(3):604–615. doi: 10.1083/jcb.92.3.604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blobel C. P., Myles D. G., Primakoff P., White J. M. Proteolytic processing of a protein involved in sperm-egg fusion correlates with acquisition of fertilization competence. J Cell Biol. 1990 Jul;111(1):69–78. doi: 10.1083/jcb.111.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cowan A. E., Myles D. G., Koppel D. E. Lateral diffusion of the PH-20 protein on guinea pig sperm: evidence that barriers to diffusion maintain plasma membrane domains in mammalian sperm. J Cell Biol. 1987 Apr;104(4):917–923. doi: 10.1083/jcb.104.4.917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cowan A. E., Primakoff P., Myles D. G. Sperm exocytosis increases the amount of PH-20 antigen on the surface of guinea pig sperm. J Cell Biol. 1986 Oct;103(4):1289–1297. doi: 10.1083/jcb.103.4.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Doherty P., Fruns M., Seaton P., Dickson G., Barton C. H., Sears T. A., Walsh F. S. A threshold effect of the major isoforms of NCAM on neurite outgrowth. Nature. 1990 Feb 1;343(6257):464–466. doi: 10.1038/343464a0. [DOI] [PubMed] [Google Scholar]
  7. Eddy E. M., Vernon R. B., Muller C. H., Hahnel A. C., Fenderson B. A. Immunodissection of sperm surface modifications during epididymal maturation. Am J Anat. 1985 Nov;174(3):225–237. doi: 10.1002/aja.1001740305. [DOI] [PubMed] [Google Scholar]
  8. Ekblom P., Vestweber D., Kemler R. Cell-matrix interactions and cell adhesion during development. Annu Rev Cell Biol. 1986;2:27–47. doi: 10.1146/annurev.cb.02.110186.000331. [DOI] [PubMed] [Google Scholar]
  9. Friend D. S. Plasma-membrane diversity in a highly polarized cell. J Cell Biol. 1982 May;93(2):243–249. doi: 10.1083/jcb.93.2.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gething M. J., Doms R. W., York D., White J. Studies on the mechanism of membrane fusion: site-specific mutagenesis of the hemagglutinin of influenza virus. J Cell Biol. 1986 Jan;102(1):11–23. doi: 10.1083/jcb.102.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gething M. J., Sambrook J. Cell-surface expression of influenza haemagglutinin from a cloned DNA copy of the RNA gene. Nature. 1981 Oct 22;293(5834):620–625. doi: 10.1038/293620a0. [DOI] [PubMed] [Google Scholar]
  12. Green D. P. The induction of the acrosome reaction in guinea-pig sperm by the divalent metal cation ionophore A23187. J Cell Sci. 1978 Aug;32:137–151. doi: 10.1242/jcs.32.1.137. [DOI] [PubMed] [Google Scholar]
  13. Hoffman S., Edelman G. M. Kinetics of homophilic binding by embryonic and adult forms of the neural cell adhesion molecule. Proc Natl Acad Sci U S A. 1983 Sep;80(18):5762–5766. doi: 10.1073/pnas.80.18.5762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Huarte J., Belin D., Bosco D., Sappino A. P., Vassalli J. D. Plasminogen activator and mouse spermatozoa: urokinase synthesis in the male genital tract and binding of the enzyme to the sperm cell surface. J Cell Biol. 1987 May;104(5):1281–1289. doi: 10.1083/jcb.104.5.1281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hubbard A. L., Stieger B., Bartles J. R. Biogenesis of endogenous plasma membrane proteins in epithelial cells. Annu Rev Physiol. 1989;51:755–770. doi: 10.1146/annurev.ph.51.030189.003543. [DOI] [PubMed] [Google Scholar]
  16. Koppel D. E., Carlson C., Smilowitz H. Analysis of heterogeneous fluorescence photobleaching by video kinetics imaging: the method of cumulants. J Microsc. 1989 Aug;155(Pt 2):199–206. doi: 10.1111/j.1365-2818.1989.tb02882.x. [DOI] [PubMed] [Google Scholar]
  17. Lisanti M. P., Rodriguez-Boulan E. Glycophospholipid membrane anchoring provides clues to the mechanism of protein sorting in polarized epithelial cells. Trends Biochem Sci. 1990 Mar;15(3):113–118. doi: 10.1016/0968-0004(90)90195-h. [DOI] [PubMed] [Google Scholar]
  18. Matter K., Brauchbar M., Bucher K., Hauri H. P. Sorting of endogenous plasma membrane proteins occurs from two sites in cultured human intestinal epithelial cells (Caco-2). Cell. 1990 Feb 9;60(3):429–437. doi: 10.1016/0092-8674(90)90594-5. [DOI] [PubMed] [Google Scholar]
  19. Myles D. G., Primakoff P. Localized surface antigens of guinea pig sperm migrate to new regions prior to fertilization. J Cell Biol. 1984 Nov;99(5):1634–1641. doi: 10.1083/jcb.99.5.1634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nelson W. J. Topogenesis of plasma membrane domains in polarized epithelial cells. Curr Opin Cell Biol. 1989 Aug;1(4):660–668. doi: 10.1016/0955-0674(89)90031-8. [DOI] [PubMed] [Google Scholar]
  21. Norment A. M., Salter R. D., Parham P., Engelhard V. H., Littman D. R. Cell-cell adhesion mediated by CD8 and MHC class I molecules. Nature. 1988 Nov 3;336(6194):79–81. doi: 10.1038/336079a0. [DOI] [PubMed] [Google Scholar]
  22. Phelps B. M., Myles D. G. The guinea pig sperm plasma membrane protein, PH-20, reaches the surface via two transport pathways and becomes localized to a domain after an initial uniform distribution. Dev Biol. 1987 Sep;123(1):63–72. doi: 10.1016/0012-1606(87)90428-3. [DOI] [PubMed] [Google Scholar]
  23. Phelps B. M., Primakoff P., Koppel D. E., Low M. G., Myles D. G. Restricted lateral diffusion of PH-20, a PI-anchored sperm membrane protein. Science. 1988 Jun 24;240(4860):1780–1782. doi: 10.1126/science.3381102. [DOI] [PubMed] [Google Scholar]
  24. Primakoff P., Cowan A., Hyatt H., Tredick-Kline J., Myles D. G. Purification of the guinea pig sperm PH-20 antigen and detection of a site-specific endoproteolytic activity in sperm preparations that cleaves PH-20 into two disulfide-linked fragments. Biol Reprod. 1988 May;38(4):921–934. doi: 10.1095/biolreprod38.4.921. [DOI] [PubMed] [Google Scholar]
  25. Primakoff P., Hyatt H., Myles D. G. A role for the migrating sperm surface antigen PH-20 in guinea pig sperm binding to the egg zona pellucida. J Cell Biol. 1985 Dec;101(6):2239–2244. doi: 10.1083/jcb.101.6.2239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Primakoff P., Hyatt H., Tredick-Kline J. Identification and purification of a sperm surface protein with a potential role in sperm-egg membrane fusion. J Cell Biol. 1987 Jan;104(1):141–149. doi: 10.1083/jcb.104.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Primakoff P., Lathrop W., Woolman L., Cowan A., Myles D. Fully effective contraception in male and female guinea pigs immunized with the sperm protein PH-20. Nature. 1988 Oct 6;335(6190):543–546. doi: 10.1038/335543a0. [DOI] [PubMed] [Google Scholar]
  28. Primakoff P., Myles D. G. A map of the guinea pig sperm surface constructed with monoclonal antibodies. Dev Biol. 1983 Aug;98(2):417–428. doi: 10.1016/0012-1606(83)90371-8. [DOI] [PubMed] [Google Scholar]
  29. Rodriguez-Boulan E., Nelson W. J. Morphogenesis of the polarized epithelial cell phenotype. Science. 1989 Aug 18;245(4919):718–725. doi: 10.1126/science.2672330. [DOI] [PubMed] [Google Scholar]
  30. Roman J., LaChance R. M., Broekelmann T. J., Kennedy C. J., Wayner E. A., Carter W. G., McDonald J. A. The fibronectin receptor is organized by extracellular matrix fibronectin: implications for oncogenic transformation and for cell recognition of fibronectin matrices. J Cell Biol. 1989 Jun;108(6):2529–2543. doi: 10.1083/jcb.108.6.2529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Suzuki F., Nagano T. Epididymal maturation of rat spermatozoa studied by thin sectioning and freeze-fracture. Biol Reprod. 1980 Jun;22(5):1219–1231. doi: 10.1093/biolreprod/22.5.1219. [DOI] [PubMed] [Google Scholar]
  32. Vanha-Perttula T., Mather J. P., Bardin C. W., Moss S. B., Bellvé A. R. Localization of the antigotensin-converting enzyme activity in testis and epididymis. Biol Reprod. 1985 Nov;33(4):870–877. doi: 10.1095/biolreprod33.4.870. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES