Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1990 Nov 1;111(5):2109–2115. doi: 10.1083/jcb.111.5.2109

Epithelial origin of cutaneous anchoring fibrils

PMCID: PMC2116344  PMID: 2229187

Abstract

Anchoring fibrils are essential structural elements of the dermoepidermal junction and are crucial to its functional integrity. They are composed largely of type VII collagen, but their cellular origin has not yet been confirmed. In this study, we demonstrate that the anchoring fibrils are primarily a product of epidermal keratinocytes. Human keratinocyte sheets were transplanted to a nondermal connective tissue graft bed in athymic mice. De novo anchoring fibril formation was studied ultrastructurally by immunogold techniques using an antiserum specific for human type VII procollagen. At 2 d after grafting, type VII procollagen/collagen was localized both intracellularly within basal keratinocytes and extracellularly beneath the discontinuous basal lamina. Within 6 d, a subconfluent basal lamina had developed, and newly formed anchoring fibrils and anchoring plaques subjacent to the xenografts were labeled. Throughout the observation period of the experiment, the maturity, population density, and architectural complexity of anchoring fibrils beneath the human epidermal graft continuously increased. Identical findings were obtained using xenografts cultivated from cloned human keratinocytes, eliminating the possibility of contributions to anchoring fibril regeneration from residual human fibroblasts. Immunolabeling was not observed at the mouse dermoepidermal junction at any time. These results demonstrate that the type VII collagen of human cutaneous anchoring fibrils and plaques is secreted by keratinocytes and can traverse the epidermal basal lamina and that the fibril formation can occur in the absence of cells of human dermal origin.

Full Text

The Full Text of this article is available as a PDF (3.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barrandon Y., Green H. Cell size as a determinant of the clone-forming ability of human keratinocytes. Proc Natl Acad Sci U S A. 1985 Aug;82(16):5390–5394. doi: 10.1073/pnas.82.16.5390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barrandon Y., Li V., Green H. New techniques for the grafting of cultured human epidermal cells onto athymic animals. J Invest Dermatol. 1988 Oct;91(4):315–318. doi: 10.1111/1523-1747.ep12475646. [DOI] [PubMed] [Google Scholar]
  3. Bentz H., Morris N. P., Murray L. W., Sakai L. Y., Hollister D. W., Burgeson R. E. Isolation and partial characterization of a new human collagen with an extended triple-helical structural domain. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3168–3172. doi: 10.1073/pnas.80.11.3168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bosca A. R., Tinois E., Faure M., Kanitakis J., Roche P., Thivolet J. Epithelial differentiation of human skin equivalents after grafting onto nude mice. J Invest Dermatol. 1988 Aug;91(2):136–141. doi: 10.1111/1523-1747.ep12464379. [DOI] [PubMed] [Google Scholar]
  5. Briggaman R. A., Dalldorf F. G., Wheeler C. E., Jr Formation and origin of basal lamina and anchoring fibrils in adult human skin. J Cell Biol. 1971 Nov;51(21):384–395. doi: 10.1083/jcb.51.2.384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Briggaman R. A., Wheeler C. E., Jr The epidermal-dermal junction. J Invest Dermatol. 1975 Jul;65(1):71–84. doi: 10.1111/1523-1747.ep12598050. [DOI] [PubMed] [Google Scholar]
  7. Bruckner-Tuderman L., Mitsuhashi Y., Schnyder U. W., Bruckner P. Anchoring fibrils and type VII collagen are absent from skin in severe recessive dystrophic epidermolysis bullosa. J Invest Dermatol. 1989 Jul;93(1):3–9. doi: 10.1111/1523-1747.ep12277331. [DOI] [PubMed] [Google Scholar]
  8. Bruckner-Tuderman L., Schnyder U. W., Winterhalter K. H., Bruckner P. Tissue form of type VII collagen from human skin and dermal fibroblasts in culture. Eur J Biochem. 1987 Jun 15;165(3):607–611. doi: 10.1111/j.1432-1033.1987.tb11483.x. [DOI] [PubMed] [Google Scholar]
  9. Burgeson R. E., Lunstrum G. P., Rokosova B., Rimberg C. S., Rosenbaum L. M., Keene D. R. The structure and function of type VII collagen. Ann N Y Acad Sci. 1990;580:32–43. doi: 10.1111/j.1749-6632.1990.tb17915.x. [DOI] [PubMed] [Google Scholar]
  10. Burgeson R. E., Morris N. P., Murray L. W., Duncan K. G., Keene D. R., Sakai L. Y. The structure of type VII collagen. Ann N Y Acad Sci. 1985;460:47–57. doi: 10.1111/j.1749-6632.1985.tb51156.x. [DOI] [PubMed] [Google Scholar]
  11. Compton C. C., Gill J. M., Bradford D. A., Regauer S., Gallico G. G., O'Connor N. E. Skin regenerated from cultured epithelial autografts on full-thickness burn wounds from 6 days to 5 years after grafting. A light, electron microscopic and immunohistochemical study. Lab Invest. 1989 May;60(5):600–612. [PubMed] [Google Scholar]
  12. Foellmer H. G., Madri J. A., Furthmayr H. Methods in laboratory investigation. Monoclonal antibodies to type IV collagen: probes for the study of structure and function of basement membranes. Lab Invest. 1983 May;48(5):639–649. [PubMed] [Google Scholar]
  13. Gipson I. K., Spurr-Michaud S. J., Tisdale A. S. Anchoring fibrils form a complex network in human and rabbit cornea. Invest Ophthalmol Vis Sci. 1987 Feb;28(2):212–220. [PubMed] [Google Scholar]
  14. Gipson I. K., Spurr-Michaud S. J., Tisdale A. S. Hemidesmosomes and anchoring fibril collagen appear synchronously during development and wound healing. Dev Biol. 1988 Apr;126(2):253–262. doi: 10.1016/0012-1606(88)90136-4. [DOI] [PubMed] [Google Scholar]
  15. Hay E. D. Extracellular matrix. J Cell Biol. 1981 Dec;91(3 Pt 2):205s–223s. doi: 10.1083/jcb.91.3.205s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hay E. D. Interaction of embryonic surface and cytoskeleton with extracellular matrix. Am J Anat. 1982 Sep;165(1):1–12. doi: 10.1002/aja.1001650102. [DOI] [PubMed] [Google Scholar]
  17. Heagerty A. H., Kennedy A. R., Leigh I. M., Purkis P., Eady R. A. Identification of an epidermal basement membrane defect in recessive forms of dystrophic epidermolysis bullosa by LH 7:2 monoclonal antibody: use in diagnosis. Br J Dermatol. 1986 Aug;115(2):125–131. doi: 10.1111/j.1365-2133.1986.tb05707.x. [DOI] [PubMed] [Google Scholar]
  18. Kanwar Y. S., Farquhar M. G. Detachment of endothelium and epithelium from the glomerular basement membrane produced by kidney perfusion with neuraminidase. Lab Invest. 1980 Mar;42(3):375–384. [PubMed] [Google Scholar]
  19. Keene D. R., Sakai L. Y., Lunstrum G. P., Morris N. P., Burgeson R. E. Type VII collagen forms an extended network of anchoring fibrils. J Cell Biol. 1987 Mar;104(3):611–621. doi: 10.1083/jcb.104.3.611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kefalides N. A., Alper R., Clark C. C. Biochemistry and metabolism of basement membranes. Int Rev Cytol. 1979;61:167–228. doi: 10.1016/s0074-7696(08)61998-1. [DOI] [PubMed] [Google Scholar]
  21. Kubo M., Norris D. A., Howell S. E., Ryan S. R., Clark R. A. Human keratinocytes synthesize, secrete, and deposit fibronectin in the pericellular matrix. J Invest Dermatol. 1984 Jun;82(6):580–586. doi: 10.1111/1523-1747.ep12261325. [DOI] [PubMed] [Google Scholar]
  22. Leigh I. M., Eady R. A., Heagerty A. H., Purkis P. E., Whitehead P. A., Burgeson R. E. Type VII collagen is a normal component of epidermal basement membrane, which shows altered expression in recessive dystrophic epidermolysis bullosa. J Invest Dermatol. 1988 May;90(5):639–642. doi: 10.1111/1523-1747.ep12560795. [DOI] [PubMed] [Google Scholar]
  23. Lunstrum G. P., Sakai L. Y., Keene D. R., Morris N. P., Burgeson R. E. Large complex globular domains of type VII procollagen contribute to the structure of anchoring fibrils. J Biol Chem. 1986 Jul 5;261(19):9042–9048. [PubMed] [Google Scholar]
  24. Martin G. R., Timpl R. Laminin and other basement membrane components. Annu Rev Cell Biol. 1987;3:57–85. doi: 10.1146/annurev.cb.03.110187.000421. [DOI] [PubMed] [Google Scholar]
  25. Morris N. P., Keene D. R., Glanville R. W., Bentz H., Burgeson R. E. The tissue form of type VII collagen is an antiparallel dimer. J Biol Chem. 1986 Apr 25;261(12):5638–5644. [PubMed] [Google Scholar]
  26. Palade G. E., Farquhar M. G. A special fibril of the dermis. J Cell Biol. 1965 Oct;27(1):215–224. doi: 10.1083/jcb.27.1.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rheinwald J. G., Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell. 1975 Nov;6(3):331–343. doi: 10.1016/s0092-8674(75)80001-8. [DOI] [PubMed] [Google Scholar]
  28. Roberts G. P., Jenner L. Glycoproteins and glycosaminoglycans synthesized by human keratinocytes in culture. Their role in cell-substratum adhesion. Biochem J. 1983 May 15;212(2):355–363. doi: 10.1042/bj2120355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sakai L. Y., Keene D. R., Morris N. P., Burgeson R. E. Type VII collagen is a major structural component of anchoring fibrils. J Cell Biol. 1986 Oct;103(4):1577–1586. doi: 10.1083/jcb.103.4.1577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Smith L. T., Sakai L. Y., Burgeson R. E., Holbrook K. A. Ontogeny of structural components at the dermal-epidermal junction in human embryonic and fetal skin: the appearance of anchoring fibrils and type VII collagen. J Invest Dermatol. 1988 Apr;90(4):480–485. doi: 10.1111/1523-1747.ep12460951. [DOI] [PubMed] [Google Scholar]
  31. Stanley J. R., Rubinstein N., Klaus-Kovtun V. Epidermolysis bullosa acquisita antigen is synthesized by both human keratinocytes and human dermal fibroblasts. J Invest Dermatol. 1985 Dec;85(6):542–545. doi: 10.1111/1523-1747.ep12277377. [DOI] [PubMed] [Google Scholar]
  32. Tidman M. J., Eady R. A. Ultrastructural morphometry of normal human dermal-epidermal junction. The influence of age, sex, and body region on laminar and nonlaminar components. J Invest Dermatol. 1984 Dec;83(6):448–453. doi: 10.1111/1523-1747.ep12273562. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES