Abstract
In nemaline myopathy and some cardiac muscles, the Z-band becomes greatly enlarged and contains multiple layers of a zigzag structure similar to that seen in normal muscle. Because of the additional periodicity in the direction of the filament axis, these structures are particularly favorable for three-dimensional analysis since it becomes possible to average the data in all three dimensions and thus improve the reliability of the reconstruction. Individual views of the structure corresponding to tilted longitudinal and transverse sections were combined by matching the phases of common reflections. Examination of the tilted views strongly suggested that to the available resolution, the structure possesses fourfold screw symmetry along the actin filament axes. This symmetry could be used both in establishing the correct alignment for the combination of individual tilted views and to generate additional views not readily accessible in a single tilt series. The reconstruction shows actin filaments from one sarcomere surrounded by an array of four actin filaments with opposite polarity from the adjacent sacormere. The actin filaments show a right- handed twist and are connected by a structure that links adjacent filaments with the same polarity at the same axial level, then runs parallel to the filaments, and finally forms a link between two actin filaments whose polarity is opposite to that of the first pair. The connecting structure is probably composed of alpha-actinin which is located in Z-bands and cross-links actin filaments. The connecting structure may consist of two alpha-actinin molecules linking actin filaments of opposite polarity.
Full Text
The Full Text of this article is available as a PDF (6.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amos L. A., Henderson R., Unwin P. N. Three-dimensional structure determination by electron microscopy of two-dimensional crystals. Prog Biophys Mol Biol. 1982;39(3):183–231. doi: 10.1016/0079-6107(83)90017-2. [DOI] [PubMed] [Google Scholar]
- Bennett P. M. Decrease in section thickness on exposure to the electron beam; the use of tilted sections in estimating the amount of shrinkage. J Cell Sci. 1974 Aug;15(3):693–701. doi: 10.1242/jcs.15.3.693. [DOI] [PubMed] [Google Scholar]
- Cheng N. Q., Deatherage J. F. Three-dimensional reconstruction of the Z disk of sectioned bee flight muscle. J Cell Biol. 1989 May;108(5):1761–1774. doi: 10.1083/jcb.108.5.1761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deatherage J. F., Cheng N. Q., Bullard B. Arrangement of filaments and cross-links in the bee flight muscle Z disk by image analysis of oblique sections. J Cell Biol. 1989 May;108(5):1775–1782. doi: 10.1083/jcb.108.5.1775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Egelman E. H., Francis N., DeRosier D. J. F-actin is a helix with a random variable twist. Nature. 1982 Jul 8;298(5870):131–135. doi: 10.1038/298131a0. [DOI] [PubMed] [Google Scholar]
- Egelman E. H., Francis N., DeRosier D. J. F-actin is a helix with a random variable twist. Nature. 1982 Jul 8;298(5870):131–135. doi: 10.1038/298131a0. [DOI] [PubMed] [Google Scholar]
- Goldstein M. A., Michael L. H., Schroeter J. P., Sass R. L. The Z-band lattice in skeletal muscle before, during and after tetanic contraction. J Muscle Res Cell Motil. 1986 Dec;7(6):527–536. doi: 10.1007/BF01753569. [DOI] [PubMed] [Google Scholar]
- Goldstein M. A., Michael L. H., Schroeter J. P., Sass R. L. Z band dynamics as a function of sarcomere length and the contractile state of muscle. FASEB J. 1987 Aug;1(2):133–142. doi: 10.1096/fasebj.1.2.3609610. [DOI] [PubMed] [Google Scholar]
- Goldstein M. A., Schroeter J. P., Sass R. L. The Z lattice in canine cardiac muscle. J Cell Biol. 1979 Oct;83(1):187–204. doi: 10.1083/jcb.83.1.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldstein M. A., Stromer M. H., Schroeter J. P., Sass R. L. Optical reconstruction of nemaline rods. Exp Neurol. 1980 Oct;70(1):83–97. doi: 10.1016/0014-4886(80)90007-2. [DOI] [PubMed] [Google Scholar]
- Goli D. E., Suzuki A., Temple J., Holmes G. R. Studies on purified -actinin. I. Effect of temperature and tropomyosin on the -actinin-F-actin interaction. J Mol Biol. 1972 Jun 28;67(3):469–488. doi: 10.1016/0022-2836(72)90464-0. [DOI] [PubMed] [Google Scholar]
- Huxley H. E., Brown W. The low-angle x-ray diagram of vertebrate striated muscle and its behaviour during contraction and rigor. J Mol Biol. 1967 Dec 14;30(2):383–434. doi: 10.1016/s0022-2836(67)80046-9. [DOI] [PubMed] [Google Scholar]
- KNAPPEIS G. G., CARLSEN F. The ultrastructure of the Z disc in skeletal muscle. J Cell Biol. 1962 May;13:323–335. doi: 10.1083/jcb.13.2.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Landon D. N. The influence of fixation upon the fine structure of the Z-disk of rat striated muscle. J Cell Sci. 1970 Jan;6(1):257–276. doi: 10.1242/jcs.6.1.257. [DOI] [PubMed] [Google Scholar]
- Luther P. K., Lawrence M. C., Crowther R. A. A method for monitoring the collapse of plastic sections as a function of electron dose. Ultramicroscopy. 1988;24(1):7–18. doi: 10.1016/0304-3991(88)90322-1. [DOI] [PubMed] [Google Scholar]
- Miller A., Tregear R. T. Structure of insect fibrillar flight muscle in the presence and absence of ATP. J Mol Biol. 1972 Sep 14;70(1):85–104. doi: 10.1016/0022-2836(72)90165-9. [DOI] [PubMed] [Google Scholar]
- Milligan R. A., Flicker P. F. Structural relationships of actin, myosin, and tropomyosin revealed by cryo-electron microscopy. J Cell Biol. 1987 Jul;105(1):29–39. doi: 10.1083/jcb.105.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Podlubnaya Z. A., Tskhovrebova L. A., Zaalishtsbvili M. M., Stefanenko G. A. Electron microscopic study of alpha-actinin. J Mol Biol. 1975 Feb 25;92(2):357–359. doi: 10.1016/0022-2836(75)90234-x. [DOI] [PubMed] [Google Scholar]
- Rowe R. W. The ultrastructure of Z disks from white, intermediate, and red fibers of mammalian striated muscles. J Cell Biol. 1973 May;57(2):261–277. doi: 10.1083/jcb.57.2.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stromer M. H., Goll D. E. Studies on purified -actinin. II. Electron microscopic studies on the competitive binding of -actinin and tropomyosin to Z-line extracted myofibrils. J Mol Biol. 1972 Jun 28;67(3):489–494. doi: 10.1016/0022-2836(72)90465-2. [DOI] [PubMed] [Google Scholar]
- Suzuki A., Goll D. E., Singh I., Allen R. E., Robson R. M., Stromer M. H. Some properties of purified skeletal muscle alpha-actinin. J Biol Chem. 1976 Nov 10;251(21):6860–6870. [PubMed] [Google Scholar]
- Toyoshima C., Wakabayashi T. Three-dimensional image analysis of the complex of thin filaments and myosin molecules from skeletal muscle. IV. Reconstitution from minimal- and high-dose images of the actin-tropomyosin-myosin subfragment-1 complex. J Biochem. 1985 Jan;97(1):219–243. doi: 10.1093/oxfordjournals.jbchem.a135048. [DOI] [PubMed] [Google Scholar]
- Ullrick W. C., Toselli P. A., Saide J. D., Phear W. P. Fine structure of the vertebrate Z-disc. J Mol Biol. 1977 Sep;115(1):61–74. doi: 10.1016/0022-2836(77)90246-7. [DOI] [PubMed] [Google Scholar]
- Vibert P., Craig R. Three-dimensional reconstruction of thin filaments decorated with a Ca2+-regulated myosin. J Mol Biol. 1982 May 15;157(2):299–319. doi: 10.1016/0022-2836(82)90236-4. [DOI] [PubMed] [Google Scholar]
- Wallraff E., Schleicher M., Modersitzki M., Rieger D., Isenberg G., Gerisch G. Selection of Dictyostelium mutants defective in cytoskeletal proteins: use of an antibody that binds to the ends of alpha-actinin rods. EMBO J. 1986 Jan;5(1):61–67. doi: 10.1002/j.1460-2075.1986.tb04178.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamaguchi M., Robson R. M., Stromer M. H., Dahl D. S., Oda T. Actin filaments form the backbone of nemaline myopathy rods. Nature. 1978 Jan 19;271(5642):265–267. doi: 10.1038/271265a0. [DOI] [PubMed] [Google Scholar]