Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1990 Dec 1;111(6):2637–2650. doi: 10.1083/jcb.111.6.2637

Neuron-specific membrane glycoproteins promoting neurite fasciculation in Aplysia californica

PMCID: PMC2116364  PMID: 2277077

Abstract

We have generated a library of mouse monoclonal antibodies against membrane proteins of the nervous system of the marine snail Aplysia californica. Two of these antibodies, 4E8 and 3D9, recognize a group of membrane glycoproteins with molecular masses of 100-150 kD. We have called these proteins ap100, from the molecular mass of the most abundant species. Based on Western blots, these proteins appear to be specific for the nervous system. They are enriched in the neuropil of central nervous system ganglia, and are present on the surface of neurites and growth cones of neurons in culture. They are not expressed on the surface of nonneuronal cells. Staining of living cells with fluorescently labeled mAb demonstrates that the epitope(s) are on the outside of the cell. The antibodies against the proteins defasciculate growing axons and alter the morphology of growth cones, but affect much less adhesion between neuritic shafts. In addition, the level of expression of these molecules appears to correlate with the degree of fasciculation of neurites. These observations suggest that the ap100 proteins are cell adhesion molecules that play a role in axon growth in the nervous system of Aplysia. The fact that they are enriched in the neuropil and possibly in varicosities suggest that they may also be relevant for the structure of mature synapses.

Full Text

The Full Text of this article is available as a PDF (6.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ambron R. T., Den H., Schacher S. Synaptogenesis by single identified neurons in vitro: contribution of rapidly transported and newly synthesized proteins. J Neurosci. 1985 Nov;5(11):2857–2865. doi: 10.1523/JNEUROSCI.05-11-02857.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bixby J. L., Pratt R. S., Lilien J., Reichardt L. F. Neurite outgrowth on muscle cell surfaces involves extracellular matrix receptors as well as Ca2+-dependent and -independent cell adhesion molecules. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2555–2559. doi: 10.1073/pnas.84.8.2555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bixby J. L., Zhang R. Purified N-cadherin is a potent substrate for the rapid induction of neurite outgrowth. J Cell Biol. 1990 Apr;110(4):1253–1260. doi: 10.1083/jcb.110.4.1253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Camardo J., Proshansky E., Schacher S. Identified Aplysia neurons form specific chemical synapses in culture. J Neurosci. 1983 Dec;3(12):2614–2620. doi: 10.1523/JNEUROSCI.03-12-02614.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cash D., Carew T. J. A quantitative analysis of the development of the central nervous system in juvenile Aplysia californica. J Neurobiol. 1989 Jan;20(1):25–47. doi: 10.1002/neu.480200104. [DOI] [PubMed] [Google Scholar]
  6. Chin G. J., Shapiro E., Vogel S. S., Schwartz J. H. Aplysia synaptosomes. I. Preparation and biochemical and morphological characterization of subcellular membrane fractions. J Neurosci. 1989 Jan;9(1):38–48. doi: 10.1523/JNEUROSCI.09-01-00038.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dash P. K., Hochner B., Kandel E. R. Injection of the cAMP-responsive element into the nucleus of Aplysia sensory neurons blocks long-term facilitation. Nature. 1990 Jun 21;345(6277):718–721. doi: 10.1038/345718a0. [DOI] [PubMed] [Google Scholar]
  8. Fischer G., Künemund V., Schachner M. Neurite outgrowth patterns in cerebellar microexplant cultures are affected by antibodies to the cell surface glycoprotein L1. J Neurosci. 1986 Feb;6(2):605–612. doi: 10.1523/JNEUROSCI.06-02-00605.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Flaster M. S., Ambron R. T., Schacher S. Growth cones isolated from identified Aplysia neurons in vitro: biochemical and morphological characterization. Dev Biol. 1986 Dec;118(2):577–586. doi: 10.1016/0012-1606(86)90027-8. [DOI] [PubMed] [Google Scholar]
  10. Furley A. J., Morton S. B., Manalo D., Karagogeos D., Dodd J., Jessell T. M. The axonal glycoprotein TAG-1 is an immunoglobulin superfamily member with neurite outgrowth-promoting activity. Cell. 1990 Apr 6;61(1):157–170. doi: 10.1016/0092-8674(90)90223-2. [DOI] [PubMed] [Google Scholar]
  11. Glanzman D. L., Kandel E. R., Schacher S. Identified target motor neuron regulates neurite outgrowth and synapse formation of aplysia sensory neurons in vitro. Neuron. 1989 Oct;3(4):441–450. doi: 10.1016/0896-6273(89)90203-1. [DOI] [PubMed] [Google Scholar]
  12. Glanzman D. L., Kandel E. R., Schacher S. Target-dependent structural changes accompanying long-term synaptic facilitation in Aplysia neurons. Science. 1990 Aug 17;249(4970):799–802. doi: 10.1126/science.2389145. [DOI] [PubMed] [Google Scholar]
  13. Goldberg D. J., Burmeister D. W. Looking into growth cones. Trends Neurosci. 1989 Dec;12(12):503–506. doi: 10.1016/0166-2236(89)90110-0. [DOI] [PubMed] [Google Scholar]
  14. Harrelson A. L., Goodman C. S. Growth cone guidance in insects: fasciclin II is a member of the immunoglobulin superfamily. Science. 1988 Nov 4;242(4879):700–708. doi: 10.1126/science.3187519. [DOI] [PubMed] [Google Scholar]
  15. Jessell T. M. Adhesion molecules and the hierarchy of neural development. Neuron. 1988 Mar;1(1):3–13. doi: 10.1016/0896-6273(88)90204-8. [DOI] [PubMed] [Google Scholar]
  16. Keller F., Rimvall K., Barbe M. F., Levitt P. A membrane glycoprotein associated with the limbic system mediates the formation of the septo-hippocampal pathway in vitro. Neuron. 1989 Nov;3(5):551–561. doi: 10.1016/0896-6273(89)90265-1. [DOI] [PubMed] [Google Scholar]
  17. Lagenaur C., Lemmon V. An L1-like molecule, the 8D9 antigen, is a potent substrate for neurite extension. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7753–7757. doi: 10.1073/pnas.84.21.7753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Matsunaga M., Hatta K., Nagafuchi A., Takeichi M. Guidance of optic nerve fibres by N-cadherin adhesion molecules. Nature. 1988 Jul 7;334(6177):62–64. doi: 10.1038/334062a0. [DOI] [PubMed] [Google Scholar]
  19. Montarolo P. G., Goelet P., Castellucci V. F., Morgan J., Kandel E. R., Schacher S. A critical period for macromolecular synthesis in long-term heterosynaptic facilitation in Aplysia. Science. 1986 Dec 5;234(4781):1249–1254. doi: 10.1126/science.3775383. [DOI] [PubMed] [Google Scholar]
  20. Rathjen F. G., Wolff J. M., Frank R., Bonhoeffer F., Rutishauser U. Membrane glycoproteins involved in neurite fasciculation. J Cell Biol. 1987 Feb;104(2):343–353. doi: 10.1083/jcb.104.2.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rayport S. G., Schacher S. Synaptic plasticity in vitro: cell culture of identified Aplysia neurons mediating short-term habituation and sensitization. J Neurosci. 1986 Mar;6(3):759–763. doi: 10.1523/JNEUROSCI.06-03-00759.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ruegg M. A., Stoeckli E. T., Lanz R. B., Streit P., Sonderegger P. A homologue of the axonally secreted protein axonin-1 is an integral membrane protein of nerve fiber tracts involved in neurite fasciculation. J Cell Biol. 1989 Nov;109(5):2363–2378. doi: 10.1083/jcb.109.5.2363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rutishauser U., Jessell T. M. Cell adhesion molecules in vertebrate neural development. Physiol Rev. 1988 Jul;68(3):819–857. doi: 10.1152/physrev.1988.68.3.819. [DOI] [PubMed] [Google Scholar]
  24. Schacher S. Differential synapse formation and neurite outgrowth at two branches of the metacerebral cell of Aplysia in dissociated cell culture. J Neurosci. 1985 Aug;5(8):2028–2034. doi: 10.1523/JNEUROSCI.05-08-02028.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Schacher S., Proshansky E. Neurite regeneration by Aplysia neurons in dissociated cell culture: modulation by Aplysia hemolymph and the presence of the initial axonal segment. J Neurosci. 1983 Dec;3(12):2403–2413. doi: 10.1523/JNEUROSCI.03-12-02403.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schneider C., Newman R. A., Sutherland D. R., Asser U., Greaves M. F. A one-step purification of membrane proteins using a high efficiency immunomatrix. J Biol Chem. 1982 Sep 25;257(18):10766–10769. [PubMed] [Google Scholar]
  27. Snow P. M., Bieber A. J., Goodman C. S. Fasciclin III: a novel homophilic adhesion molecule in Drosophila. Cell. 1989 Oct 20;59(2):313–323. doi: 10.1016/0092-8674(89)90293-6. [DOI] [PubMed] [Google Scholar]
  28. Swanson M. E., Elste A. M., Greenberg S. M., Schwartz J. H., Aldrich T. H., Furth M. E. Abundant expression of ras proteins in Aplysia neurons. J Cell Biol. 1986 Aug;103(2):485–492. doi: 10.1083/jcb.103.2.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tomaselli K. J., Neugebauer K. M., Bixby J. L., Lilien J., Reichardt L. F. N-cadherin and integrins: two receptor systems that mediate neuronal process outgrowth on astrocyte surfaces. Neuron. 1988 Mar;1(1):33–43. doi: 10.1016/0896-6273(88)90207-3. [DOI] [PubMed] [Google Scholar]
  30. Zipser B., Morell R., Bajt M. L. Defasciculation as a neuronal pathfinding strategy: involvement of a specific glycoprotein. Neuron. 1989 Nov;3(5):621–630. doi: 10.1016/0896-6273(89)90272-9. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES