Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1990 Dec 1;111(6):2681–2692. doi: 10.1083/jcb.111.6.2681

Isolation and characterization of a 60-70-kD plasma membrane glycoprotein involved in the contact-dependent inhibition of growth

PMCID: PMC2116370  PMID: 2277080

Abstract

Previous studies have shown that plasma membrane compounds are involved in the contact-dependent inhibition of growth of human diploid fibroblasts. The purification of the active plasma membrane glycoprotein is described in this report. The glycoprotein has an apparent molecular mass of 60-70 kD and, due to differential sialylation, isoelectric points between pH 5.5. and 6.2. Treatment with sialidase yielded one spot in two-dimensional gel electrophoresis with an isoelectric point of 6.3. After removal of the N-glycosidically linked oligosaccharide chains, the apparent molecular mass is reduced by approximately 22 kD. Treatment was diluted NaOH, which removes the O- glycosidically linked portion of oligosaccharides, resulted in a reduction of the apparent molecular mass by approximately 5 kD. The addition of 50 ng/ml of this glycoprotein-for which the term "contactinhibin" is proposed-in immobilized form to sparsely seeded human fibroblasts resulted in a reversible 70-80% inhibition of growth. The inhibition was not confined to human fibroblasts as other cells were also inhibited, with the exclusion of transformed cells, which are refractory to contactinhibin. The inhibitory activity was abolished by treatment with beta-galactosidase or glycopeptidase F, indicating that the glycan moiety is the biologically active part of the molecule. Confluent cultures treated with antibodies raised against contactinhibin were released from the contact-dependent inhibition of growth. In addition to enhanced saturation density, these cultures exhibited a crisscross growth pattern and the formation of foci. Immunocytochemical studies showed that contactinhibin was associated with vimentin. Furthermore, contactinhibin was found to be not expressed in a species- or organ-specific manner.

Full Text

The Full Text of this article is available as a PDF (3.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acheson A., Rutishauser U. Neural cell adhesion molecule regulates cell contact-mediated changes in choline acetyltransferase activity of embryonic chick sympathetic neurons. J Cell Biol. 1988 Feb;106(2):479–486. doi: 10.1083/jcb.106.2.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Augenlicht L. H., Baserga R. Changes in the G0 state of WI-38 fibroblasts at different times after confluence. Exp Cell Res. 1974 Dec;89(2):255–262. doi: 10.1016/0014-4827(74)90789-7. [DOI] [PubMed] [Google Scholar]
  3. Bard J., Elsdale T. Growth regulation in multilayered cultures of human diploid fibroblasts: the roles of contact, movement and matrix production. Cell Tissue Kinet. 1986 Mar;19(2):141–154. doi: 10.1111/j.1365-2184.1986.tb00724.x. [DOI] [PubMed] [Google Scholar]
  4. Bayna E. M., Shaper J. H., Shur B. D. Temporally specific involvement of cell surface beta-1,4 galactosyltransferase during mouse embryo morula compaction. Cell. 1988 Apr 8;53(1):145–157. doi: 10.1016/0092-8674(88)90496-5. [DOI] [PubMed] [Google Scholar]
  5. Blat C., Bohlen P., Villaudy J., Chatelain G., Golde A., Harel L. Isolation and amino-terminal sequence of a novel cellular growth inhibitor (inhibitory diffusible factor 45) secreted by 3T3 fibroblasts. J Biol Chem. 1989 Apr 15;264(11):6021–6024. [PubMed] [Google Scholar]
  6. Bleil J. D., Wassarman P. M. Galactose at the nonreducing terminus of O-linked oligosaccharides of mouse egg zona pellucida glycoprotein ZP3 is essential for the glycoprotein's sperm receptor activity. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6778–6782. doi: 10.1073/pnas.85.18.6778. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bolscher J. G., van der Bijl M. M., Neefjes J. J., Hall A., Smets L. A., Ploegh H. L. Ras (proto)oncogene induces N-linked carbohydrate modification: temporal relationship with induction of invasive potential. EMBO J. 1988 Nov;7(11):3361–3368. doi: 10.1002/j.1460-2075.1988.tb03208.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brackenbury R., Greenberg M. E., Edelman G. M. Phenotypic changes and loss of N-CAM-mediated adhesion in transformed embryonic chicken retinal cells. J Cell Biol. 1984 Dec;99(6):1944–1954. doi: 10.1083/jcb.99.6.1944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Böhmer F. D., Kraft R., Otto A., Wernstedt C., Hellman U., Kurtz A., Müller T., Rohde K., Etzold G., Lehmann W. Identification of a polypeptide growth inhibitor from bovine mammary gland. Sequence homology to fatty acid- and retinoid-binding proteins. J Biol Chem. 1987 Nov 5;262(31):15137–15143. [PubMed] [Google Scholar]
  10. Castellot J. J., Jr, Choay J., Lormeau J. C., Petitou M., Sache E., Karnovsky M. J. Structural determinants of the capacity of heparin to inhibit the proliferation of vascular smooth muscle cells. II. Evidence for a pentasaccharide sequence that contains a 3-O-sulfate group. J Cell Biol. 1986 May;102(5):1979–1984. doi: 10.1083/jcb.102.5.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cole G. J., Loewy A., Glaser L. Neuronal cell-cell adhesion depends on interactions of N-CAM with heparin-like molecules. Nature. 1986 Apr 3;320(6061):445–447. doi: 10.1038/320445a0. [DOI] [PubMed] [Google Scholar]
  12. Diano M., Le Bivic A., Hirn M. A method for the production of highly specific polyclonal antibodies. Anal Biochem. 1987 Oct;166(1):224–229. doi: 10.1016/0003-2697(87)90568-9. [DOI] [PubMed] [Google Scholar]
  13. Eggens I., Fenderson B. A., Toyokuni T., Hakomori S. A role of carbohydrate-carbohydrate interaction in the process of specific cell recognition during embryogenesis and organogenesis: a preliminary note. Biochem Biophys Res Commun. 1989 Feb 15;158(3):913–920. doi: 10.1016/0006-291x(89)92809-x. [DOI] [PubMed] [Google Scholar]
  14. Ervin P. R., Jr, Kaminski M. S., Cody R. L., Wicha M. S. Production of mammastatin, a tissue-specific growth inhibitor, by normal human mammary cells. Science. 1989 Jun 30;244(4912):1585–1587. doi: 10.1126/science.2662405. [DOI] [PubMed] [Google Scholar]
  15. Fritze L. M., Reilly C. F., Rosenberg R. D. An antiproliferative heparan sulfate species produced by postconfluent smooth muscle cells. J Cell Biol. 1985 Apr;100(4):1041–1049. doi: 10.1083/jcb.100.4.1041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Goustin A. S., Leof E. B., Shipley G. D., Moses H. L. Growth factors and cancer. Cancer Res. 1986 Mar;46(3):1015–1029. [PubMed] [Google Scholar]
  17. Hatten M. E. Neuronal inhibition of astroglial cell proliferation is membrane mediated. J Cell Biol. 1987 May;104(5):1353–1360. doi: 10.1083/jcb.104.5.1353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Heimark R. L., Schwartz S. M. The role of membrane-membrane interactions in the regulation of endothelial cell growth. J Cell Biol. 1985 Jun;100(6):1934–1940. doi: 10.1083/jcb.100.6.1934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Heldin C. H., Betsholtz C., Claesson-Welsh L., Westermark B. Subversion of growth regulatory pathways in malignant transformation. Biochim Biophys Acta. 1987 Nov 25;907(3):219–244. doi: 10.1016/0304-419x(87)90007-2. [DOI] [PubMed] [Google Scholar]
  20. Herrmann I., Grosse R. Characterization of membrane-associated growth inhibitor activity for Ehrlich ascites mammary carcinoma cells. Biomed Biochim Acta. 1986;45(4):447–457. [PubMed] [Google Scholar]
  21. Hoffman S., Edelman G. M. Kinetics of homophilic binding by embryonic and adult forms of the neural cell adhesion molecule. Proc Natl Acad Sci U S A. 1983 Sep;80(18):5762–5766. doi: 10.1073/pnas.80.18.5762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Holley R. W. Control of growth of mammalian cells in cell culture. Nature. 1975 Dec 11;258(5535):487–490. doi: 10.1038/258487a0. [DOI] [PubMed] [Google Scholar]
  23. Horwitz A., Duggan K., Buck C., Beckerle M. C., Burridge K. Interaction of plasma membrane fibronectin receptor with talin--a transmembrane linkage. Nature. 1986 Apr 10;320(6062):531–533. doi: 10.1038/320531a0. [DOI] [PubMed] [Google Scholar]
  24. Hsu Y. M., Wang J. L. Growth control in cultured 3T3 fibroblasts. V. Purification of an Mr 13,000 polypeptide responsible for growth inhibitory activity. J Cell Biol. 1986 Feb;102(2):362–369. doi: 10.1083/jcb.102.2.362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Imamura T., Mitsui Y. Heparan sulfate and heparin as a potentiator or a suppressor of growth of normal and transformed vascular endothelial cells. Exp Cell Res. 1987 Sep;172(1):92–100. doi: 10.1016/0014-4827(87)90096-6. [DOI] [PubMed] [Google Scholar]
  26. Kardami E., Spector D., Strohman R. C. Heparin inhibits skeletal muscle growth in vitro. Dev Biol. 1988 Mar;126(1):19–28. doi: 10.1016/0012-1606(88)90234-5. [DOI] [PubMed] [Google Scholar]
  27. Keilhauer G., Faissner A., Schachner M. Differential inhibition of neurone-neurone, neurone-astrocyte and astrocyte-astrocyte adhesion by L1, L2 and N-CAM antibodies. Nature. 1985 Aug 22;316(6030):728–730. doi: 10.1038/316728a0. [DOI] [PubMed] [Google Scholar]
  28. Kinders R. J., Milenkovic A. G., Nordin P., Johnson T. C. Characterization of cell-surface glycopeptides from mouse cerebral cortex that inhibit cell growth and protein synthesis. Biochem J. 1980 Sep 15;190(3):605–614. doi: 10.1042/bj1900605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Klein G., Klein E. Conditioned tumorigenicity of activated oncogenes. Cancer Res. 1986 Jul;46(7):3211–3224. [PubMed] [Google Scholar]
  30. Koga T., Nakano S., Nakayama M., Kounoue E., Nagafuchi S., Niho Y., Yamada H. Identification and partial purification of a low-molecular-weight growth inhibitor formed by density-inhibited, tumorigenic V79 Chinese hamster cells. Cancer Res. 1986 Sep;46(9):4431–4437. [PubMed] [Google Scholar]
  31. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  32. Lacy B. E., Underhill C. B. The hyaluronate receptor is associated with actin filaments. J Cell Biol. 1987 Sep;105(3):1395–1404. doi: 10.1083/jcb.105.3.1395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  34. Lieberman M. A. The presence of both growth inhibitory and growth stimulatory factors on membranes prepared from mouse liver. Biochem Biophys Res Commun. 1984 May 16;120(3):891–897. doi: 10.1016/s0006-291x(84)80191-6. [DOI] [PubMed] [Google Scholar]
  35. Lipkin G., Knecht M. E., Rosenberg M. A potent inhibitor of normal and transformed cell growth derived from contact-inhibited cells. Cancer Res. 1978 Mar;38(3):635–643. [PubMed] [Google Scholar]
  36. McMahon J. B., Farrelly J. G., Iype P. T. Purification and properties of a rat liver protein that specifically inhibits the proliferation of nonmalignant epithelial cells from rat liver. Proc Natl Acad Sci U S A. 1982 Jan;79(2):456–460. doi: 10.1073/pnas.79.2.456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Miyazaki K., Horio T. Growth inhibitors: molecular diversity and roles in cell proliferation. In Vitro Cell Dev Biol. 1989 Oct;25(10):866–872. doi: 10.1007/BF02623997. [DOI] [PubMed] [Google Scholar]
  38. Morrison J. F., Ebner K. E. Studies on galactosyltransferase. Kinetic effects of -lactalbumin with N-acetylglucosamine and glucose as galactosyl group acceptors. J Biol Chem. 1971 Jun 25;246(12):3992–3998. [PubMed] [Google Scholar]
  39. Muramatsu T., Atkinson P. H., Nathenson S. G., Ceccarini C. Cell-surface glycopeptides: growth-dependent changes in the carbohydrate-peptide linkage region. J Mol Biol. 1973 Nov 15;80(4):781–799. doi: 10.1016/0022-2836(73)90210-6. [DOI] [PubMed] [Google Scholar]
  40. Nakamura T., Nakayama Y., Ichihara A. Reciprocal modulation of growth and liver functions of mature rat hepatocytes in primary culture by an extract of hepatic plasma membranes. J Biol Chem. 1984 Jul 10;259(13):8056–8058. [PubMed] [Google Scholar]
  41. Nakamura T., Yoshimoto K., Nakayama Y., Tomita Y., Ichihara A. Reciprocal modulation of growth and differentiated functions of mature rat hepatocytes in primary culture by cell--cell contact and cell membranes. Proc Natl Acad Sci U S A. 1983 Dec;80(23):7229–7233. doi: 10.1073/pnas.80.23.7229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Natraj C. V., Datta P. Control of DNA synthesis in growing BALB/c 3T3 mouse cells by a fibroblast growth regulatory factor. Proc Natl Acad Sci U S A. 1978 Dec;75(12):6115–6119. doi: 10.1073/pnas.75.12.6115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Nelson W. J., Shore E. M., Wang A. Z., Hammerton R. W. Identification of a membrane-cytoskeletal complex containing the cell adhesion molecule uvomorulin (E-cadherin), ankyrin, and fodrin in Madin-Darby canine kidney epithelial cells. J Cell Biol. 1990 Feb;110(2):349–357. doi: 10.1083/jcb.110.2.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Nilsson J., Ksiazek T., Thyberg J., Wasteson A. Cell surface components and growth regulation in cultivated arterial smooth muscle cells. J Cell Sci. 1983 Nov;64:107–121. doi: 10.1242/jcs.64.1.107. [DOI] [PubMed] [Google Scholar]
  45. Oohira A., Matsui F., Oki T., Nogami H. Deficiency of density-dependent regulation of cell growth in the culture of skin fibroblasts from patients with mucolipidosis III. J Cell Sci. 1987 Mar;87(Pt 2):249–257. doi: 10.1242/jcs.87.2.249. [DOI] [PubMed] [Google Scholar]
  46. Pereira-Smith O. M., Fisher S. F., Smith J. R. Senescent and quiescent cell inhibitors of DNA synthesis. Membrane-associated proteins. Exp Cell Res. 1985 Oct;160(2):297–306. doi: 10.1016/0014-4827(85)90177-6. [DOI] [PubMed] [Google Scholar]
  47. Peterson R. N., Hunt W. P. Identification, isolation, and properties of a plasma membrane protein involved in the adhesion of boar sperm to the porcine zona pellucida. Gamete Res. 1989 May;23(1):103–118. doi: 10.1002/mrd.1120230110. [DOI] [PubMed] [Google Scholar]
  48. Poot M., Verkerk A., Jongkind J. F. Accumulation of a high molecular weight glycoprotein during in vitro ageing and contact inhibition of growth. Mech Ageing Dev. 1986 May;34(3):219–232. doi: 10.1016/0047-6374(86)90075-8. [DOI] [PubMed] [Google Scholar]
  49. Raben D., Lieberman M. A., Glaser L. Growth inhibitory protein(s) in the 3T3 cell plasma membrane. Partial purification and dissociation of growth inhibitory events from inhibition of amino acid transport. J Cell Physiol. 1981 Jul;108(1):35–45. doi: 10.1002/jcp.1041080106. [DOI] [PubMed] [Google Scholar]
  50. Reddy P., Caras I., Krieger M. Effects of O-linked glycosylation on the cell surface expression and stability of decay-accelerating factor, a glycophospholipid-anchored membrane protein. J Biol Chem. 1989 Oct 15;264(29):17329–17336. [PubMed] [Google Scholar]
  51. Rinderknecht S. B., Weiler J. M. Termination of tritiated thymidine incorporation by freezing the cells. J Immunol Methods. 1983 Dec 30;65(3):293–294. doi: 10.1016/0022-1759(83)90124-2. [DOI] [PubMed] [Google Scholar]
  52. Rodemann H. P., Bayreuther K. Differential degradation of [35S]methionine polypeptides in Duchenne muscular dystrophy skin fibroblasts in vitro. Proc Natl Acad Sci U S A. 1986 Apr;83(7):2086–2090. doi: 10.1073/pnas.83.7.2086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Ruoslahti E. Proteoglycans in cell regulation. J Biol Chem. 1989 Aug 15;264(23):13369–13372. [PubMed] [Google Scholar]
  54. Saadat S., Thoenen H. Selective induction of tyrosine hydroxylase by cell-cell contact in bovine adrenal chromaffin cells is mimicked by plasma membranes. J Cell Biol. 1986 Nov;103(5):1991–1997. doi: 10.1083/jcb.103.5.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Sasak W., Quaroni A., Herscovics A. Changes in cell-surface fucose-containing glycopeptides and adhesion of cultured intestinal epithelial cells as a function of cell density. Biochem J. 1983 Apr 1;211(1):75–80. doi: 10.1042/bj2110075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Scott R. E. Plasma membrane vesiculation: a new technique for isolation of plasma membranes. Science. 1976 Nov 12;194(4266):743–745. doi: 10.1126/science.982044. [DOI] [PubMed] [Google Scholar]
  57. Stein G. H., Atkins L. Membrane-associated inhibitor of DNA synthesis in senescent human diploid fibroblasts: characterization and comparison to quiescent cell inhibitor. Proc Natl Acad Sci U S A. 1986 Dec;83(23):9030–9034. doi: 10.1073/pnas.83.23.9030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Stoolman L. M. Adhesion molecules controlling lymphocyte migration. Cell. 1989 Mar 24;56(6):907–910. doi: 10.1016/0092-8674(89)90620-x. [DOI] [PubMed] [Google Scholar]
  59. Streeter P. R., Berg E. L., Rouse B. T., Bargatze R. F., Butcher E. C. A tissue-specific endothelial cell molecule involved in lymphocyte homing. Nature. 1988 Jan 7;331(6151):41–46. doi: 10.1038/331041a0. [DOI] [PubMed] [Google Scholar]
  60. Tarone G., Ferracini R., Galetto G., Comoglio P. A cell surface integral membrane glycoprotein of 85,000 mol wt (gp85) associated with triton X-100-insoluble cell skeleton. J Cell Biol. 1984 Aug;99(2):512–519. doi: 10.1083/jcb.99.2.512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Vollmers H. P., Imhof B. A., Wieland I., Hiesel A., Birchmeier W. Monoclonal antibodies NORM-1 and NORM-2 induce more normal behavior of tumor cells in vitro and reduce tumor growth in vivo. Cell. 1985 Mar;40(3):547–557. doi: 10.1016/0092-8674(85)90203-x. [DOI] [PubMed] [Google Scholar]
  63. Wang E. A 57,000-mol-wt protein uniquely present in nonproliferating cells and senescent human fibroblasts. J Cell Biol. 1985 Feb;100(2):545–551. doi: 10.1083/jcb.100.2.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Wessel D., Flügge U. I. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem. 1984 Apr;138(1):141–143. doi: 10.1016/0003-2697(84)90782-6. [DOI] [PubMed] [Google Scholar]
  65. Whittenberger B., Glaser L. Inhibition of DNA synthesis in cultures of 3T3 cells by isolated surface membranes. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2251–2255. doi: 10.1073/pnas.74.6.2251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Wieser R. J., Heck R., Oesch F. Involvement of plasma membrane glycoproteins in the contact-dependent inhibition of growth of human fibroblasts. Exp Cell Res. 1985 Jun;158(2):493–499. doi: 10.1016/0014-4827(85)90472-0. [DOI] [PubMed] [Google Scholar]
  67. Wieser R. J., Oesch F. Contact inhibition of growth of human diploid fibroblasts by immobilized plasma membrane glycoproteins. J Cell Biol. 1986 Aug;103(2):361–367. doi: 10.1083/jcb.103.2.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Wieser R. J., Oesch F. Contact-dependent regulation of growth of diploid human fibroblasts is dependent upon the presence of terminal galactose residues on plasma membrane glycoproteins. Exp Cell Res. 1988 May;176(1):80–86. doi: 10.1016/0014-4827(88)90122-x. [DOI] [PubMed] [Google Scholar]
  69. Wieser R. J., Oesch F. Plasma membrane glycoproteins covalently bound to silica beads as a model for molecular studies of cell-cell interactions in culture. J Biochem Biophys Methods. 1987 Oct;15(1):13–21. doi: 10.1016/0165-022x(87)90058-3. [DOI] [PubMed] [Google Scholar]
  70. Wille J. J., Jr, Scott R. E. Suppression of tumorigenicity by the cell-cycle-dependent control of cellular differentiation and proliferation. Int J Cancer. 1986 Jun 15;37(6):875–881. doi: 10.1002/ijc.2910370613. [DOI] [PubMed] [Google Scholar]
  71. Yaoi Y. Growth-inhibitory glycopeptides obtained from the cell surface of cultured chick embryo fibroblasts. Exp Cell Res. 1984 Sep;154(1):147–154. doi: 10.1016/0014-4827(84)90675-x. [DOI] [PubMed] [Google Scholar]
  72. Zalik S. E., Milos N. C. Endogenous lectins and cell adhesion in embryonic cells. Dev Biol (N Y 1985) 1986;2:145–194. doi: 10.1007/978-1-4613-2141-5_5. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES