Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1990 Dec 1;111(6):2553–2562. doi: 10.1083/jcb.111.6.2553

Vesicle transport along microtubular ribbons and isolation of cytoplasmic dynein from Paramecium

PMCID: PMC2116376  PMID: 2148940

Abstract

Cytoplasmic microtubule-based motility in Paramecium was investigated using video-enhanced contrast microscopy, the quick-freeze, deep-etch technique, and biochemical isolations. Three distinct vesicle populations were found to be transported unidirectionally along the cytopharyngeal microtubular ribbons. This minus-end-directed movement exhibited unique in vivo features in that the vesicle transport was nonsaltatory, rapid, and predominantly along one side of the microtubular ribbons. To identify candidate motor proteins which may participate in vesicle transport, we prepared cytosolic extracts of Paramecium and used bovine brain microtubules as an affinity matrix. These preparations were found to contain a microtubule-stimulated ATPase which supported microtubule gliding in vitro. This protein was verified as a cytoplasmic dynein based upon its relative molecular mass, sedimentation coefficient of 16S, susceptibility to vanadate photocleavage, elevated CTPase/ATPase ratio, and its typical two-headed dynein morphology. This dynein was directly compared with the axonemal dyneins from Paramecium and found to differ by five criteria: morphology, sedimentation coefficient, CTPase/ATPase ratio, vanadate cleavage patterns, and polypeptide composition. The cytoplasmic dynein is therefore not an axonemal dynein precursor, but rather it represents a candidate for supporting the microtubule-based vesicle transport which proceeds along the microtubular ribbons.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adoutte A., Ramanathan R., Lewis R. M., Dute R. R., Ling K. Y., Kung C., Nelson D. L. Biochemical studies of the excitable membrane of Paramecium tetraurelia. III. Proteins of cilia and ciliary membranes. J Cell Biol. 1980 Mar;84(3):717–738. doi: 10.1083/jcb.84.3.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allen R. D. Evidence for firm linkages between microtubules and membrane-bounded vesicles. J Cell Biol. 1975 Feb;64(2):497–503. doi: 10.1083/jcb.64.2.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Allen R. D., Fok A. K. Nonlysosomal vesicles (acidosomes) are involved in phagosome acidification in Paramecium. J Cell Biol. 1983 Aug;97(2):566–570. doi: 10.1083/jcb.97.2.566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Allen R. D., Fok A. K. Phagosome fusion vesicles of Paramecium. II. Freeze-fracture evidence for membrane replacement. Eur J Cell Biol. 1983 Jan;29(2):159–165. [PubMed] [Google Scholar]
  5. Allen R. D. Food vacuole membrane growth with microtubule-associated membrane transport in Paramecium. J Cell Biol. 1974 Dec;63(3):904–922. doi: 10.1083/jcb.63.3.904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Allen R. D., Metuzals J., Tasaki I., Brady S. T., Gilbert S. P. Fast axonal transport in squid giant axon. Science. 1982 Dec 10;218(4577):1127–1129. doi: 10.1126/science.6183744. [DOI] [PubMed] [Google Scholar]
  7. Allen R. D., Schroeder C. C., Fok A. K. An investigation of mitochondrial inner membranes by rapid-freeze deep-etch techniques. J Cell Biol. 1989 Jun;108(6):2233–2240. doi: 10.1083/jcb.108.6.2233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Allen R. D., Weiss D. G., Hayden J. H., Brown D. T., Fujiwake H., Simpson M. Gliding movement of and bidirectional transport along single native microtubules from squid axoplasm: evidence for an active role of microtubules in cytoplasmic transport. J Cell Biol. 1985 May;100(5):1736–1752. doi: 10.1083/jcb.100.5.1736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bell C. W., Fraser C. L., Sale W. S., Tang W. J., Gibbons I. R. Preparation and purification of dynein. Methods Enzymol. 1982;85(Pt B):450–474. doi: 10.1016/0076-6879(82)85045-3. [DOI] [PubMed] [Google Scholar]
  10. Brady S. T., Lasek R. J., Allen R. D. Fast axonal transport in extruded axoplasm from squid giant axon. Science. 1982 Dec 10;218(4577):1129–1131. doi: 10.1126/science.6183745. [DOI] [PubMed] [Google Scholar]
  11. Brady S. T., Lasek R. J., Allen R. D. Video microscopy of fast axonal transport in extruded axoplasm: a new model for study of molecular mechanisms. Cell Motil. 1985;5(2):81–101. doi: 10.1002/cm.970050203. [DOI] [PubMed] [Google Scholar]
  12. Collins C. A., Vallee R. B. Preparation of microtubules from rat liver and testis: cytoplasmic dynein is a major microtubule associated protein. Cell Motil Cytoskeleton. 1989;14(4):491–500. doi: 10.1002/cm.970140407. [DOI] [PubMed] [Google Scholar]
  13. Dabora S. L., Sheetz M. P. Cultured cell extracts support organelle movement on microtubules in vitro. Cell Motil Cytoskeleton. 1988;10(4):482–495. doi: 10.1002/cm.970100405. [DOI] [PubMed] [Google Scholar]
  14. Euteneuer U., Koonce M. P., Pfister K. K., Schliwa M. An ATPase with properties expected for the organelle motor of the giant amoeba, Reticulomyxa. Nature. 1988 Mar 10;332(6160):176–178. doi: 10.1038/332176a0. [DOI] [PubMed] [Google Scholar]
  15. Fok A. K., Allen R. D. Axenic Paramecium caudatum. I. Mass culture and structure. J Protozool. 1979 Aug;26(3):463–470. doi: 10.1111/j.1550-7408.1979.tb04654.x. [DOI] [PubMed] [Google Scholar]
  16. Fok A. K., Allen R. D. The phagosome-lysosome membrane system and its regulation in Paramecium. Int Rev Cytol. 1990;123:61–94. doi: 10.1016/s0074-7696(08)60671-3. [DOI] [PubMed] [Google Scholar]
  17. Foltz K. R., Asai D. J. Ionic strength-dependent isoforms of sea urchin egg dynein. J Biol Chem. 1988 Feb 25;263(6):2878–2883. [PubMed] [Google Scholar]
  18. Gibbons I. R., Lee-Eiford A., Mocz G., Phillipson C. A., Tang W. J., Gibbons B. H. Photosensitized cleavage of dynein heavy chains. Cleavage at the "V1 site" by irradiation at 365 nm in the presence of ATP and vanadate. J Biol Chem. 1987 Feb 25;262(6):2780–2786. [PubMed] [Google Scholar]
  19. Heidemann S. R., McIntosh J. R. Visualization of the structural polarity of microtubules. Nature. 1980 Jul 31;286(5772):517–519. doi: 10.1038/286517a0. [DOI] [PubMed] [Google Scholar]
  20. Hirokawa N., Sato-Yoshitake R., Yoshida T., Kawashima T. Brain dynein (MAP1C) localizes on both anterogradely and retrogradely transported membranous organelles in vivo. J Cell Biol. 1990 Sep;111(3):1027–1037. doi: 10.1083/jcb.111.3.1027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Koonce M. P., Euteneuer U., McDonald K. L., Menzel D., Schliwa M. Cytoskeletal architecture and motility in a giant freshwater amoeba, Reticulomyxa. Cell Motil Cytoskeleton. 1986;6(5):521–533. doi: 10.1002/cm.970060511. [DOI] [PubMed] [Google Scholar]
  22. Koonce M. P., McIntosh J. R. Identification and immunolocalization of cytoplasmic dynein in Dictyostelium. Cell Motil Cytoskeleton. 1990;15(1):51–62. doi: 10.1002/cm.970150108. [DOI] [PubMed] [Google Scholar]
  23. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  24. Lanzetta P. A., Alvarez L. J., Reinach P. S., Candia O. A. An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem. 1979 Nov 15;100(1):95–97. doi: 10.1016/0003-2697(79)90115-5. [DOI] [PubMed] [Google Scholar]
  25. MARTIN R. G., AMES B. N. A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J Biol Chem. 1961 May;236:1372–1379. [PubMed] [Google Scholar]
  26. Marchese-Ragona S. P., Wall J. S., Johnson K. A. Structure and mass analysis of 14S dynein obtained from Tetrahymena cilia. J Cell Biol. 1988 Jan;106(1):127–132. doi: 10.1083/jcb.106.1.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Merril C. R., Goldman D., Sedman S. A., Ebert M. H. Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science. 1981 Mar 27;211(4489):1437–1438. doi: 10.1126/science.6162199. [DOI] [PubMed] [Google Scholar]
  28. Neely M. D., Boekelheide K. Sertoli cell processes have axoplasmic features: an ordered microtubule distribution and an abundant high molecular weight microtubule-associated protein (cytoplasmic dynein). J Cell Biol. 1988 Nov;107(5):1767–1776. doi: 10.1083/jcb.107.5.1767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Neely M. D., Erickson H. P., Boekelheide K. HMW-2, the Sertoli cell cytoplasmic dynein from rat testis, is a dimer composed of nearly identical subunits. J Biol Chem. 1990 May 25;265(15):8691–8698. [PubMed] [Google Scholar]
  30. Paschal B. M., Obar R. A., Vallee R. B. Interaction of brain cytoplasmic dynein and MAP2 with a common sequence at the C terminus of tubulin. Nature. 1989 Nov 30;342(6249):569–572. doi: 10.1038/342569a0. [DOI] [PubMed] [Google Scholar]
  31. Paschal B. M., Shpetner H. S., Vallee R. B. MAP 1C is a microtubule-activated ATPase which translocates microtubules in vitro and has dynein-like properties. J Cell Biol. 1987 Sep;105(3):1273–1282. doi: 10.1083/jcb.105.3.1273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Paschal B. M., Vallee R. B. Retrograde transport by the microtubule-associated protein MAP 1C. Nature. 1987 Nov 12;330(6144):181–183. doi: 10.1038/330181a0. [DOI] [PubMed] [Google Scholar]
  33. Porter M. E., Grissom P. M., Scholey J. M., Salmon E. D., McIntosh J. R. Dynein isoforms in sea urchin eggs. J Biol Chem. 1988 May 15;263(14):6759–6771. [PubMed] [Google Scholar]
  34. Pratt M. M. Homology of egg and flagellar dynein. Comparison of ATP-binding sites and primary structure. J Biol Chem. 1986 Jan 15;261(2):956–964. [PubMed] [Google Scholar]
  35. Rebhun L. I. Polarized intracellular particle transport: saltatory movements and cytoplasmic streaming. Int Rev Cytol. 1972;32:93–137. doi: 10.1016/s0074-7696(08)60339-3. [DOI] [PubMed] [Google Scholar]
  36. Schnapp B. J., Reese T. S. Dynein is the motor for retrograde axonal transport of organelles. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1548–1552. doi: 10.1073/pnas.86.5.1548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Schroer T. A., Schnapp B. J., Reese T. S., Sheetz M. P. The role of kinesin and other soluble factors in organelle movement along microtubules. J Cell Biol. 1988 Nov;107(5):1785–1792. doi: 10.1083/jcb.107.5.1785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Schroer T. A., Steuer E. R., Sheetz M. P. Cytoplasmic dynein is a minus end-directed motor for membranous organelles. Cell. 1989 Mar 24;56(6):937–946. doi: 10.1016/0092-8674(89)90627-2. [DOI] [PubMed] [Google Scholar]
  39. Shimizu T. The substrate specificity of dynein from Tetrahymena cilia. J Biochem. 1987 Nov;102(5):1159–1165. doi: 10.1093/oxfordjournals.jbchem.a122154. [DOI] [PubMed] [Google Scholar]
  40. Shpetner H. S., Paschal B. M., Vallee R. B. Characterization of the microtubule-activated ATPase of brain cytoplasmic dynein (MAP 1C). J Cell Biol. 1988 Sep;107(3):1001–1009. doi: 10.1083/jcb.107.3.1001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Travis S. M., Nelson D. L. Purification and properties of dyneins from Paramecium cilia. Biochim Biophys Acta. 1988 Jul 14;966(1):73–83. doi: 10.1016/0304-4165(88)90130-4. [DOI] [PubMed] [Google Scholar]
  42. Vale R. D., Reese T. S., Sheetz M. P. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell. 1985 Aug;42(1):39–50. doi: 10.1016/s0092-8674(85)80099-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Vale R. D., Schnapp B. J., Mitchison T., Steuer E., Reese T. S., Sheetz M. P. Different axoplasmic proteins generate movement in opposite directions along microtubules in vitro. Cell. 1985 Dec;43(3 Pt 2):623–632. doi: 10.1016/0092-8674(85)90234-x. [DOI] [PubMed] [Google Scholar]
  44. Vale R. D., Schnapp B. J., Reese T. S., Sheetz M. P. Movement of organelles along filaments dissociated from the axoplasm of the squid giant axon. Cell. 1985 Feb;40(2):449–454. doi: 10.1016/0092-8674(85)90159-x. [DOI] [PubMed] [Google Scholar]
  45. Vale R. D., Toyoshima Y. Y. Microtubule translocation properties of intact and proteolytically digested dyneins from Tetrahymena cilia. J Cell Biol. 1989 Jun;108(6):2327–2334. doi: 10.1083/jcb.108.6.2327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Vallee R. B. A taxol-dependent procedure for the isolation of microtubules and microtubule-associated proteins (MAPs). J Cell Biol. 1982 Feb;92(2):435–442. doi: 10.1083/jcb.92.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Vallee R. B. Purification of brain microtubules and microtubule-associated protein 1 using taxol. Methods Enzymol. 1986;134:104–115. doi: 10.1016/0076-6879(86)34079-5. [DOI] [PubMed] [Google Scholar]
  48. Vallee R. B., Wall J. S., Paschal B. M., Shpetner H. S. Microtubule-associated protein 1C from brain is a two-headed cytosolic dynein. Nature. 1988 Apr 7;332(6164):561–563. doi: 10.1038/332561a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES