Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1990 Dec 1;111(6):2327–2340. doi: 10.1083/jcb.111.6.2327

The lytic granules of natural killer cells are dual-function organelles combining secretory and pre-lysosomal compartments

PMCID: PMC2116378  PMID: 2277062

Abstract

Cytolytic lymphocytes contain specialized lytic granules whose secretion during cell-mediated cytolysis results in target cell death. Using serial section EM of RNK-16, a natural killer cell line, we show that there are structurally distinct types of granules. Each type is composed of varying proportions of a dense core domain and a multivesicular cortical domain. The dense core domains contain secretory proteins thought to play a role in cytolysis, including cytolysin and chondroitin sulfate proteoglycan. In contrast, the multivesicular domains contain lysosomal proteins, including acid phosphatase, alpha-glucosidase, cathepsin D, and LGP-120. In addition to their protein content, the lytic granules have other properties in common with lysosomes. The multivesicular regions of the granules have an acidic pH, comparable to that of endosomes and lysosomes. The granules take up exogenous cationized ferritin with lysosome-like kinetics, and this uptake is blocked by weak bases and low temperature. The multivesicular domains of the granules are rich in the 270-kD mannose-6-phosphate receptor, a marker which is absent from mature lysosomes but present in earlier endocytic compartments. Thus, the natural killer granules represent an unusual dual-function organelle, where a regulated secretory compartment, the dense core, is contained within a pre-lysosomal compartment, the multivesicular domain.

Full Text

The Full Text of this article is available as a PDF (6.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson R. G., Falck J. R., Goldstein J. L., Brown M. S. Visualization of acidic organelles in intact cells by electron microscopy. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4838–4842. doi: 10.1073/pnas.81.15.4838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson R. G., Orci L. A view of acidic intracellular compartments. J Cell Biol. 1988 Mar;106(3):539–543. doi: 10.1083/jcb.106.3.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Avnur Z., Geiger B. Immunocytochemical localization of native chondroitin-sulfate in tissues and cultured cells using specific monoclonal antibody. Cell. 1984 Oct;38(3):811–822. doi: 10.1016/0092-8674(84)90276-9. [DOI] [PubMed] [Google Scholar]
  4. Bainton D. F., Farquhar M. G. Segregation and packaging of granule enzymes in eosinophilic leukocytes. J Cell Biol. 1970 Apr;45(1):54–73. doi: 10.1083/jcb.45.1.54. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bainton D. F. The discovery of lysosomes. J Cell Biol. 1981 Dec;91(3 Pt 2):66s–76s. doi: 10.1083/jcb.91.3.66s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Blumenthal R., Millard P. J., Henkart M. P., Reynolds C. W., Henkart P. A. Liposomes as targets for granule cytolysin from cytotoxic large granular lymphocyte tumors. Proc Natl Acad Sci U S A. 1984 Sep;81(17):5551–5555. doi: 10.1073/pnas.81.17.5551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Braulke T., Gartung C., Hasilik A., von Figura K. Is movement of mannose 6-phosphate-specific receptor triggered by binding of lysosomal enzymes? J Cell Biol. 1987 Jun;104(6):1735–1742. doi: 10.1083/jcb.104.6.1735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brown W. J., Farquhar M. G. The mannose-6-phosphate receptor for lysosomal enzymes is concentrated in cis Golgi cisternae. Cell. 1984 Feb;36(2):295–307. doi: 10.1016/0092-8674(84)90223-x. [DOI] [PubMed] [Google Scholar]
  9. Brown W. J., Goodhouse J., Farquhar M. G. Mannose-6-phosphate receptors for lysosomal enzymes cycle between the Golgi complex and endosomes. J Cell Biol. 1986 Oct;103(4):1235–1247. doi: 10.1083/jcb.103.4.1235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Burgess T. L., Kelly R. B. Constitutive and regulated secretion of proteins. Annu Rev Cell Biol. 1987;3:243–293. doi: 10.1146/annurev.cb.03.110187.001331. [DOI] [PubMed] [Google Scholar]
  11. Burkhardt J. K., Hester S., Argon Y. Two proteins targeted to the same lytic granule compartment undergo very different posttranslational processing. Proc Natl Acad Sci U S A. 1989 Sep;86(18):7128–7132. doi: 10.1073/pnas.86.18.7128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Carpen O., Virtanen I., Saksela E. Ultrastructure of human natural killer cells: nature of the cytolytic contacts in relation to cellular secretion. J Immunol. 1982 Jun;128(6):2691–2697. [PubMed] [Google Scholar]
  13. Caulfield J. P., Hein A., Schmidt R. E., Ritz J. Ultrastructural evidence that the granules of human natural killer cell clones store membrane in a nonbilayer phase. Am J Pathol. 1987 May;127(2):305–316. [PMC free article] [PubMed] [Google Scholar]
  14. Chambers W. H., Vujanovic N. L., DeLeo A. B., Olszowy M. W., Herberman R. B., Hiserodt J. C. Monoclonal antibody to a triggering structure expressed on rat natural killer cells and adherent lymphokine-activated killer cells. J Exp Med. 1989 Apr 1;169(4):1373–1389. doi: 10.1084/jem.169.4.1373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Estensen R. D., White J. G., Holmes B. Specific degranulation of human polymorphonuclear leukocytes. Nature. 1974 Mar 22;248(446):347–348. doi: 10.1038/248347a0. [DOI] [PubMed] [Google Scholar]
  16. Farquhar M. G., Palade G. E. The Golgi apparatus (complex)-(1954-1981)-from artifact to center stage. J Cell Biol. 1981 Dec;91(3 Pt 2):77s–103s. doi: 10.1083/jcb.91.3.77s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Faust P. L., Chirgwin J. M., Kornfeld S. Renin, a secretory glycoprotein, acquires phosphomannosyl residues. J Cell Biol. 1987 Nov;105(5):1947–1955. doi: 10.1083/jcb.105.5.1947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Frey T., Petty H. R., McConnell H. M. Electron microscopic study of natural killer cell-tumor cell conjugates. Proc Natl Acad Sci U S A. 1982 Sep;79(17):5317–5321. doi: 10.1073/pnas.79.17.5317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Galloway C. J., Dean G. E., Marsh M., Rudnick G., Mellman I. Acidification of macrophage and fibroblast endocytic vesicles in vitro. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3334–3338. doi: 10.1073/pnas.80.11.3334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Geuze H. J., Slot J. W., Strous G. J., Hasilik A., von Figura K. Possible pathways for lysosomal enzyme delivery. J Cell Biol. 1985 Dec;101(6):2253–2262. doi: 10.1083/jcb.101.6.2253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Gonzalez-Noriega A., Grubb J. H., Talkad V., Sly W. S. Chloroquine inhibits lysosomal enzyme pinocytosis and enhances lysosomal enzyme secretion by impairing receptor recycling. J Cell Biol. 1980 Jun;85(3):839–852. doi: 10.1083/jcb.85.3.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Gordon P. B., Seglen P. O. Prelysosomal convergence of autophagic and endocytic pathways. Biochem Biophys Res Commun. 1988 Feb 29;151(1):40–47. doi: 10.1016/0006-291x(88)90556-6. [DOI] [PubMed] [Google Scholar]
  23. Griffiths G., Hoflack B., Simons K., Mellman I., Kornfeld S. The mannose 6-phosphate receptor and the biogenesis of lysosomes. Cell. 1988 Feb 12;52(3):329–341. doi: 10.1016/s0092-8674(88)80026-6. [DOI] [PubMed] [Google Scholar]
  24. Groscurth P., Qiao B. Y., Podack E. R., Hengartner H. Cellular localization of perforin 1 in murine cloned cytotoxic T lymphocytes. J Immunol. 1987 May 1;138(9):2749–2752. [PubMed] [Google Scholar]
  25. Hand A. R., Oliver C. Effects of secretory stimulation on the Golgi apparatus and GERL of rat parotid acinar cells. J Histochem Cytochem. 1984 Apr;32(4):403–412. doi: 10.1177/32.4.6142913. [DOI] [PubMed] [Google Scholar]
  26. Hayes M. P., Berrebi G. A., Henkart P. A. Induction of target cell DNA release by the cytotoxic T lymphocyte granule protease granzyme A. J Exp Med. 1989 Sep 1;170(3):933–946. doi: 10.1084/jem.170.3.933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Jenne D. E., Tschopp J. Granzymes, a family of serine proteases released from granules of cytolytic T lymphocytes upon T cell receptor stimulation. Immunol Rev. 1988 Mar;103:53–71. doi: 10.1111/j.1600-065x.1988.tb00749.x. [DOI] [PubMed] [Google Scholar]
  28. Jenne D., Rey C., Haefliger J. A., Qiao B. Y., Groscurth P., Tschopp J. Identification and sequencing of cDNA clones encoding the granule-associated serine proteases granzymes D, E, and F of cytolytic T lymphocytes. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4814–4818. doi: 10.1073/pnas.85.13.4814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kamada M. M., Michon J., Ritz J., Holldack J., Serafin W. E., Austen K. F., MacDermott R. P., Stevens R. L. Identification of carboxypeptidase and tryptic esterase activities that are complexed to proteoglycans in the secretory granules of human cloned natural killer cells. J Immunol. 1989 Jan 15;142(2):609–615. [PubMed] [Google Scholar]
  30. Lenhard J. M., Siegel A., Free S. J. Developing Dictyostelium cells contain the lysosomal enzyme alpha-mannosidase in a secretory granule. J Cell Biol. 1989 Dec;109(6 Pt 1):2761–2769. doi: 10.1083/jcb.109.6.2761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lewis V., Green S. A., Marsh M., Vihko P., Helenius A., Mellman I. Glycoproteins of the lysosomal membrane. J Cell Biol. 1985 Jun;100(6):1839–1847. doi: 10.1083/jcb.100.6.1839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. MacDermott R. P., Schmidt R. E., Caulfield J. P., Hein A., Bartley G. T., Ritz J., Schlossman S. F., Austen K. F., Stevens R. L. Proteoglycans in cell-mediated cytotoxicity. Identification, localization, and exocytosis of a chondroitin sulfate proteoglycan from human cloned natural killer cells during target cell lysis. J Exp Med. 1985 Dec 1;162(6):1771–1787. doi: 10.1084/jem.162.6.1771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Marsh M., Bolzau E., Helenius A. Penetration of Semliki Forest virus from acidic prelysosomal vacuoles. Cell. 1983 Mar;32(3):931–940. doi: 10.1016/0092-8674(83)90078-8. [DOI] [PubMed] [Google Scholar]
  34. Mellman I., Fuchs R., Helenius A. Acidification of the endocytic and exocytic pathways. Annu Rev Biochem. 1986;55:663–700. doi: 10.1146/annurev.bi.55.070186.003311. [DOI] [PubMed] [Google Scholar]
  35. Millard P. J., Henkart M. P., Reynolds C. W., Henkart P. A. Purification and properties of cytoplasmic granules from cytotoxic rat LGL tumors. J Immunol. 1984 Jun;132(6):3197–3204. [PubMed] [Google Scholar]
  36. Munger W. E., Berrebi G. A., Henkart P. A. Possible involvement of CTL granule proteases in target cell DNA breakdown. Immunol Rev. 1988 Mar;103:99–109. doi: 10.1111/j.1600-065x.1988.tb00752.x. [DOI] [PubMed] [Google Scholar]
  37. Neighbour P. A., Huberman H. S., Kress Y. Human large granular lymphocytes and natural killing ultrastructural studies of strontium-induced degranulation. Eur J Immunol. 1982 Jul;12(7):588–595. doi: 10.1002/eji.1830120711. [DOI] [PubMed] [Google Scholar]
  38. Neutra M. R., Ciechanover A., Owen L. S., Lodish H. F. Intracellular transport of transferrin- and asialoorosomucoid-colloidal gold conjugates to lysosomes after receptor-mediated endocytosis. J Histochem Cytochem. 1985 Nov;33(11):1134–1144. doi: 10.1177/33.11.2997327. [DOI] [PubMed] [Google Scholar]
  39. Orye E., Plum J., De Smedt M. Beta-glucuronidase activity in human T and B lymphocytes and the Tmu and T gamma subpopulations. Histochemistry. 1984;81(3):287–290. doi: 10.1007/BF00495641. [DOI] [PubMed] [Google Scholar]
  40. Peters P. J., Geuze H. J., Van der Donk H. A., Slot J. W., Griffith J. M., Stam N. J., Clevers H. C., Borst J. Molecules relevant for T cell-target cell interaction are present in cytolytic granules of human T lymphocytes. Eur J Immunol. 1989 Aug;19(8):1469–1475. doi: 10.1002/eji.1830190819. [DOI] [PubMed] [Google Scholar]
  41. Podack E. R., Young J. D., Cohn Z. A. Isolation and biochemical and functional characterization of perforin 1 from cytolytic T-cell granules. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8629–8633. doi: 10.1073/pnas.82.24.8629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Resau J. H., Marzella L., Trump B. F., Jones R. T. Degradation of zymogen granules by lysosomes in cultured pancreatic explants. Am J Pathol. 1984 May;115(2):139–150. [PMC free article] [PubMed] [Google Scholar]
  43. Reynolds C. W., Bere E. W., Jr, Ward J. M. Natural killer activity in the rat. III. Characterization of transplantable large granular lymphocyte (LGL) leukemias in the F344 rat. J Immunol. 1984 Jan;132(1):534–540. [PubMed] [Google Scholar]
  44. Reynolds C. W., Reichardt D., Henkart M., Millard P., Henkart P. Inhibition of NK and ADCC activity by antibodies against purified cytoplasmic granules from rat LGL tumors. J Leukoc Biol. 1987 Dec;42(6):642–652. doi: 10.1002/jlb.42.6.642. [DOI] [PubMed] [Google Scholar]
  45. Reynolds C. W., Timonen T., Herberman R. B. Natural killer (NK) cell activity in the rat. I. Isolation and characterization of the effector cells. J Immunol. 1981 Jul;127(1):282–287. [PubMed] [Google Scholar]
  46. Rhodes C. J., Halban P. A. Newly synthesized proinsulin/insulin and stored insulin are released from pancreatic B cells predominantly via a regulated, rather than a constitutive, pathway. J Cell Biol. 1987 Jul;105(1):145–153. doi: 10.1083/jcb.105.1.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Sahagian G. G., Neufeld E. F. Biosynthesis and turnover of the mannose 6-phosphate receptor in cultured Chinese hamster ovary cells. J Biol Chem. 1983 Jun 10;258(11):7121–7128. [PubMed] [Google Scholar]
  48. Schnell A. H., Swenne I., Borg L. A. Lysosomes and pancreatic islet function. A quantitative estimation of crinophagy in the mouse pancreatic B-cell. Cell Tissue Res. 1988 Apr;252(1):9–15. doi: 10.1007/BF00213820. [DOI] [PubMed] [Google Scholar]
  49. Seeman P. M., Palade G. E. Acid phosphatase localization in rabbit eosinophils. J Cell Biol. 1967 Sep;34(3):745–756. doi: 10.1083/jcb.34.3.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Sheil J. M., Bevan M. J., Lefrancois L. Characterization of dual-reactive H-2Kb-restricted anti-vesicular stomatitus virus and alloreactive cytotoxic T cells. J Immunol. 1987 Jun 1;138(11):3654–3660. [PubMed] [Google Scholar]
  51. Slot J. W., Geuze H. J. A new method of preparing gold probes for multiple-labeling cytochemistry. Eur J Cell Biol. 1985 Jul;38(1):87–93. [PubMed] [Google Scholar]
  52. Takayama H., Trenn G., Humphrey W., Jr, Bluestone J. A., Henkart P. A., Sitkovsky M. V. Antigen receptor-triggered secretion of a trypsin-type esterase from cytotoxic T lymphocytes. J Immunol. 1987 Jan 15;138(2):566–569. [PubMed] [Google Scholar]
  53. Taugner R., Whalley A., Angermüller S., Bührle C. P., Hackenthal E. Are the renin-containing granules of juxtaglomerular epithelioid cells modified lysosomes? Cell Tissue Res. 1985;239(3):575–587. doi: 10.1007/BF00219236. [DOI] [PubMed] [Google Scholar]
  54. Willingham M. C., Pastan I. H. Transit of epidermal growth factor through coated pits of the Golgi system. J Cell Biol. 1982 Jul;94(1):207–212. doi: 10.1083/jcb.94.1.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Zagury D. Direct analysis of individual killer T cells: susceptibility of target cells to lysis and secretion of hydrolytic enzymes by CTL. Adv Exp Med Biol. 1982;146:149–169. doi: 10.1007/978-1-4684-8959-0_10. [DOI] [PubMed] [Google Scholar]
  56. Zarcone D., Prasthofer E. F., Malavasi F., Pistoia V., LoBuglio A. F., Grossi C. E. Ultrastructural analysis of human natural killer cell activation. Blood. 1987 Jun;69(6):1725–1736. [PubMed] [Google Scholar]
  57. Zucker-Franklin D., Grusky G., Yang J. S. Arylsulfatase in natural killer cells: its possible role in cytotoxicity. Proc Natl Acad Sci U S A. 1983 Nov;80(22):6977–6981. doi: 10.1073/pnas.80.22.6977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. von Figura K., Gieselmann V., Hasilik A. Antibody to mannose 6-phosphate specific receptor induces receptor deficiency in human fibroblasts. EMBO J. 1984 Jun;3(6):1281–1286. doi: 10.1002/j.1460-2075.1984.tb01963.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES