Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1990 Dec 1;111(6):2437–2449. doi: 10.1083/jcb.111.6.2437

Normal myogenic cells from newborn mice restore normal histology to degenerating muscles of the mdx mouse

PMCID: PMC2116381  PMID: 2277066

Abstract

Dystrophin deficiency in skeletal muscle of the x-linked dystrophic (mdx) mouse can be partially remedied by implantation of normal muscle precursor cells (mpc) (Partridge, T. A., J. E. Morgan, G. R. Coulton, E. P. Hoffman, and L. M. Kunkel. 1989. Nature (Lond.). 337:176-179). However, it is difficult to determine whether this biochemical "rescue" results in any improvement in the structure or function of the treated muscle, because the vigorous regeneration of mdx muscle more than compensates for the degeneration (Coulton, G. R., N. A. Curtin, J. E. Morgan, and T. A. Partridge. 1988. Neuropathol. Appl. Neurobiol. 14:299- 314). By using x-ray irradiation to prevent mpc proliferation, it is possible to study loss of mdx muscle fibers without the complicating effect of simultaneous fiber regeneration. Thus, improvements in fiber survival resulting from any potential therapy can be detected easily (Wakeford, S., D. J. Watt, and T. A. Patridge. 1990. Muscle & Nerve.) Here, we have implanted normal mpc, obtained from newborn mice, into such preirradiated mdx muscles, finding that it is far more extensively permeated and replaced by implanted mpc than is nonirradiated mdx muscle; this is evident both from analysis of glucose-6-phosphate isomerase isoenzyme markers and from immunoblots and immunostaining of dystrophin in the treated muscles. Incorporation of normal mpc markedly reduces the loss of muscle fibers and the deterioration of muscle structure which otherwise occurs in irradiated mdx muscles. Surprisingly, the regenerated fibers are largely peripherally nucleated, whereas regenerated mouse skeletal muscle fibers are normally centrally nucleated. We attribute this regeneration of apparently normal muscle to the tendency of newborn mouse mpc to recapitulate their neonatal ontogeny, even when grafted into 3-wk-old degenerating muscle.

Full Text

The Full Text of this article is available as a PDF (4.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson J. E., Ovalle W. K., Bressler B. H. Electron microscopic and autoradiographic characterization of hindlimb muscle regeneration in the mdx mouse. Anat Rec. 1987 Nov;219(3):243–257. doi: 10.1002/ar.1092190305. [DOI] [PubMed] [Google Scholar]
  2. Blau H. M., Webster C., Pavlath G. K. Defective myoblasts identified in Duchenne muscular dystrophy. Proc Natl Acad Sci U S A. 1983 Aug;80(15):4856–4860. doi: 10.1073/pnas.80.15.4856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bridges L. R. The association of cardiac muscle necrosis and inflammation with the degenerative and persistent myopathy of MDX mice. J Neurol Sci. 1986 Feb;72(2-3):147–157. doi: 10.1016/0022-510x(86)90003-1. [DOI] [PubMed] [Google Scholar]
  4. Bulfield G., Siller W. G., Wight P. A., Moore K. J. X chromosome-linked muscular dystrophy (mdx) in the mouse. Proc Natl Acad Sci U S A. 1984 Feb;81(4):1189–1192. doi: 10.1073/pnas.81.4.1189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cardasis C. A., Cooper G. W. An analysis of nuclear numbers in individual muscle fibers during differentiation and growth: a satellite cell-muscle fiber growth unit. J Exp Zool. 1975 Mar;191(3):347–358. doi: 10.1002/jez.1401910305. [DOI] [PubMed] [Google Scholar]
  6. Carnwath J. W., Shotton D. M. Muscular dystrophy in the mdx mouse: histopathology of the soleus and extensor digitorum longus muscles. J Neurol Sci. 1987 Aug;80(1):39–54. doi: 10.1016/0022-510x(87)90219-x. [DOI] [PubMed] [Google Scholar]
  7. Cossu G., Molinaro M., Pacifici M. Differential response of satellite cells and embryonic myoblasts to a tumor promoter. Dev Biol. 1983 Aug;98(2):520–524. doi: 10.1016/0012-1606(83)90382-2. [DOI] [PubMed] [Google Scholar]
  8. Coulton G. R., Curtin N. A., Morgan J. E., Partridge T. A. The mdx mouse skeletal muscle myopathy: II. Contractile properties. Neuropathol Appl Neurobiol. 1988 Jul-Aug;14(4):299–314. doi: 10.1111/j.1365-2990.1988.tb00890.x. [DOI] [PubMed] [Google Scholar]
  9. Coulton G. R., Morgan J. E., Partridge T. A., Sloper J. C. The mdx mouse skeletal muscle myopathy: I. A histological, morphometric and biochemical investigation. Neuropathol Appl Neurobiol. 1988 Jan-Feb;14(1):53–70. doi: 10.1111/j.1365-2990.1988.tb00866.x. [DOI] [PubMed] [Google Scholar]
  10. DiMario J., Buffinger N., Yamada S., Strohman R. C. Fibroblast growth factor in the extracellular matrix of dystrophic (mdx) mouse muscle. Science. 1989 May 12;244(4905):688–690. doi: 10.1126/science.2717945. [DOI] [PubMed] [Google Scholar]
  11. Frair P. M., Peterson A. C. The nuclear-cytoplasmic relationship in 'mosaic' skeletal muscle fibers from mouse chimaeras. Exp Cell Res. 1983 Apr 15;145(1):167–178. doi: 10.1016/s0014-4827(83)80018-4. [DOI] [PubMed] [Google Scholar]
  12. Grounds M., Partridge T. A., Sloper J. C. The contribution of exogenous cells to regenerating skeletal muscle: an isoenzyme study of muscle allografts in mice. J Pathol. 1980 Dec;132(4):325–341. doi: 10.1002/path.1711320404. [DOI] [PubMed] [Google Scholar]
  13. Hoffman E. P., Brown R. H., Jr, Kunkel L. M. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell. 1987 Dec 24;51(6):919–928. doi: 10.1016/0092-8674(87)90579-4. [DOI] [PubMed] [Google Scholar]
  14. Hoffman E. P., Fischbeck K. H., Brown R. H., Johnson M., Medori R., Loike J. D., Harris J. B., Waterston R., Brooke M., Specht L. Characterization of dystrophin in muscle-biopsy specimens from patients with Duchenne's or Becker's muscular dystrophy. N Engl J Med. 1988 May 26;318(21):1363–1368. doi: 10.1056/NEJM198805263182104. [DOI] [PubMed] [Google Scholar]
  15. Kaprielian Z., Fambrough D. M. Expression of fast and slow isoforms of the Ca2+-ATPase in developing chick skeletal muscle. Dev Biol. 1987 Dec;124(2):490–503. doi: 10.1016/0012-1606(87)90502-1. [DOI] [PubMed] [Google Scholar]
  16. Karpati G., Pouliot Y., Zubrzycka-Gaarn E., Carpenter S., Ray P. N., Worton R. G., Holland P. Dystrophin is expressed in mdx skeletal muscle fibers after normal myoblast implantation. Am J Pathol. 1989 Jul;135(1):27–32. [PMC free article] [PubMed] [Google Scholar]
  17. Law P. K., Bertorini T. E., Goodwin T. G., Chen M., Fang Q. W., Li H. J., Kirby D. S., Florendo J. A., Herrod H. G., Golden G. S. Dystrophin production induced by myoblast transfer therapy in Duchenne muscular dystrophy. Lancet. 1990 Jul 14;336(8707):114–115. doi: 10.1016/0140-6736(90)91628-n. [DOI] [PubMed] [Google Scholar]
  18. Law P. K., Goodwin T. G., Wang M. G. Normal myoblast injections provide genetic treatment for murine dystrophy. Muscle Nerve. 1988 Jun;11(6):525–533. doi: 10.1002/mus.880110602. [DOI] [PubMed] [Google Scholar]
  19. Marshall P. A., Williams P. E., Goldspink G. Accumulation of collagen and altered fiber-type ratios as indicators of abnormal muscle gene expression in the mdx dystrophic mouse. Muscle Nerve. 1989 Jul;12(7):528–537. doi: 10.1002/mus.880120703. [DOI] [PubMed] [Google Scholar]
  20. Morgan J. E., Coulton G. R., Partridge T. A. Mdx muscle grafts retain the mdx phenotype in normal hosts. Muscle Nerve. 1989 May;12(5):401–409. doi: 10.1002/mus.880120511. [DOI] [PubMed] [Google Scholar]
  21. Morgan J. E., Coulton G. R., Partridge T. A. Muscle precursor cells invade and repopulate freeze-killed muscles. J Muscle Res Cell Motil. 1987 Oct;8(5):386–396. doi: 10.1007/BF01578428. [DOI] [PubMed] [Google Scholar]
  22. Morgan J. E. Myogenicity in vitro and in vivo of mouse muscle cells separated on discontinuous Percoll gradients. J Neurol Sci. 1988 Jun;85(2):197–207. doi: 10.1016/0022-510x(88)90156-6. [DOI] [PubMed] [Google Scholar]
  23. Morgan J. E., Watt D. J., Sloper J. C., Partridge T. A. Partial correction of an inherited biochemical defect of skeletal muscle by grafts of normal muscle precursor cells. J Neurol Sci. 1988 Sep;86(2-3):137–147. doi: 10.1016/0022-510x(88)90093-7. [DOI] [PubMed] [Google Scholar]
  24. Partridge T. A., Morgan J. E., Coulton G. R., Hoffman E. P., Kunkel L. M. Conversion of mdx myofibres from dystrophin-negative to -positive by injection of normal myoblasts. Nature. 1989 Jan 12;337(6203):176–179. doi: 10.1038/337176a0. [DOI] [PubMed] [Google Scholar]
  25. Partridge T. A., Sloper J. C. A host contribution to the regeneration of muscle grafts. J Neurol Sci. 1977 Sep;33(3):425–435. doi: 10.1016/0022-510x(77)90138-1. [DOI] [PubMed] [Google Scholar]
  26. Peterson A., Pena S. Relationship of genotype and in vitro contractility in mdg/mdg in equilibrium +/+ "mosaic" myotubes. Muscle Nerve. 1984 Mar-Apr;7(3):194–203. doi: 10.1002/mus.880070303. [DOI] [PubMed] [Google Scholar]
  27. Schultz E., Jaryszak D. L., Valliere C. R. Response of satellite cells to focal skeletal muscle injury. Muscle Nerve. 1985 Mar-Apr;8(3):217–222. doi: 10.1002/mus.880080307. [DOI] [PubMed] [Google Scholar]
  28. Watkins S. C., Hoffman E. P., Slayter H. S., Kunkel L. M. Dystrophin distribution in heterozygote MDX mice. Muscle Nerve. 1989 Oct;12(10):861–868. doi: 10.1002/mus.880121013. [DOI] [PubMed] [Google Scholar]
  29. Watt D. J., Lambert K., Morgan J. E., Partridge T. A., Sloper J. C. Incorporation of donor muscle precursor cells into an area of muscle regeneration in the host mouse. J Neurol Sci. 1982 Dec;57(2-3):319–331. doi: 10.1016/0022-510x(82)90038-7. [DOI] [PubMed] [Google Scholar]
  30. Watt D. J., Morgan J. E., Clifford M. A., Partridge T. A. The movement of muscle precursor cells between adjacent regenerating muscles in the mouse. Anat Embryol (Berl) 1987;175(4):527–536. doi: 10.1007/BF00309688. [DOI] [PubMed] [Google Scholar]
  31. Watt D. J., Morgan J. E., Partridge T. A. Use of mononuclear precursor cells to insert allogeneic genes into growing mouse muscles. Muscle Nerve. 1984 Nov-Dec;7(9):741–750. doi: 10.1002/mus.880070908. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES