Abstract
Isolated cell preparations from chicken gizzard smooth muscle typically contain a mixture of cell fragments and whole cells. Both species are spontaneously permeable and may be preloaded with externally applied phalloidin and antibodies and then induced to contract with Mg ATP. Labeling with antibodies revealed that the cell fragments specifically lacked certain cytoskeletal proteins (vinculin, filamin) and were depleted to various degrees in others (desmin, alpha-actinin). The cell fragments showed a unique mode of supercontraction that involved the protrusion of actin filaments through the cell surface during the terminal phase of shortening. In the presence of dextran, to minimize protein loss, the supercontracted products were star-like in form, comprising long actin bundles radiating in all directions from a central core containing myosin, desmin, and alpha-actinin. It is concluded that supercontraction is facilitated by an effective uncoupling of the contractile apparatus from the cytoskeleton, due to partial degradation of the latter, which allows unhindered sliding of actin over myosin. Homogenization of the cell fragments before or after supercontraction produced linear bipolar dimer structures composed of two oppositely polarized bundles of actin flanking a central bundle of myosin filaments. Actin filaments were shown to extend the whole length of the bundles and their length averaged integral to 4.5 microns. Myosin filaments in the supercontracted dimers averaged 1.6 microns in length. The results, showing for the first time the high actin to myosin filament length ratio in smooth muscle are readily consistent with the slow speed of shortening of this tissue. Other implications of the results are also discussed.
Full Text
The Full Text of this article is available as a PDF (5.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arheden H., Arner A., Hellstrand P. Force-velocity relation and rate of ATP hydrolysis in osmotically compressed skinned smooth muscle of the guinea pig. J Muscle Res Cell Motil. 1987 Apr;8(2):151–160. doi: 10.1007/BF01753991. [DOI] [PubMed] [Google Scholar]
- Ashton F. T., Somlyo A. V., Somlyo A. P. The contractile apparatus of vascular smooth muscle: intermediate high voltage stereo electron microscopy. J Mol Biol. 1975 Oct 15;98(1):17–29. doi: 10.1016/s0022-2836(75)80098-2. [DOI] [PubMed] [Google Scholar]
- Bagby R. Toward a comprehensive three-dimensional model of the contractile system of vertebrate smooth muscle cells. Int Rev Cytol. 1986;105:67–128. doi: 10.1016/s0074-7696(08)61062-1. [DOI] [PubMed] [Google Scholar]
- Bond M., Somlyo A. V. Dense bodies and actin polarity in vertebrate smooth muscle. J Cell Biol. 1982 Nov;95(2 Pt 1):403–413. doi: 10.1083/jcb.95.2.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brandtzaeg P. Conjugates of immunoglobulin G with different fluorochromes. I. Characterization by anionic-exchange chromatography. Scand J Immunol. 1973;2(3):273–290. doi: 10.1111/j.1365-3083.1973.tb02037.x. [DOI] [PubMed] [Google Scholar]
- Cooke P. H., Fay F. S., Craig R. Myosin filaments isolated from skinned amphibian smooth muscle cells are side-polar. J Muscle Res Cell Motil. 1989 Jun;10(3):206–220. doi: 10.1007/BF01739811. [DOI] [PubMed] [Google Scholar]
- Craig R., Megerman J. Assembly of smooth muscle myosin into side-polar filaments. J Cell Biol. 1977 Dec;75(3):990–996. doi: 10.1083/jcb.75.3.990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cross R. A., Cross K. E., Sobieszek A. ATP-linked monomer-polymer equilibrium of smooth muscle myosin: the free folded monomer traps ADP.Pi. EMBO J. 1986 Oct;5(10):2637–2641. doi: 10.1002/j.1460-2075.1986.tb04545.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Draeger A., Stelzer E. H., Herzog M., Small J. V. Unique geometry of actin-membrane anchorage sites in avian gizzard smooth muscle cells. J Cell Sci. 1989 Dec;94(Pt 4):703–711. doi: 10.1242/jcs.94.4.703. [DOI] [PubMed] [Google Scholar]
- Fay F. S., Delise C. M. Contraction of isolated smooth-muscle cells--structural changes. Proc Natl Acad Sci U S A. 1973 Mar;70(3):641–645. doi: 10.1073/pnas.70.3.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fisher B. A., Bagby R. M. Reorientation of myofilaments during contraction of a vertebrate smooth muscle. Am J Physiol. 1977 Jan;232(1):C5–14. doi: 10.1152/ajpcell.1977.232.1.C5. [DOI] [PubMed] [Google Scholar]
- Gröschel-Stewart U., Jaroschik U., Schwalm H. Chicken gizzard, a myoglobin containing smooth muscle. Experientia. 1971 May 15;27(5):512–513. doi: 10.1007/BF02147568. [DOI] [PubMed] [Google Scholar]
- HUXLEY H. E. The double array of filaments in cross-striated muscle. J Biophys Biochem Cytol. 1957 Sep 25;3(5):631–648. doi: 10.1083/jcb.3.5.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hinssen H., D'Haese J., Small J. V., Sobieszek A. Mode of filament assembly of myosins from muscle and nonmuscle cells. J Ultrastruct Res. 1978 Sep;64(3):282–302. doi: 10.1016/s0022-5320(78)90037-0. [DOI] [PubMed] [Google Scholar]
- Kendrick-Jones J., Cande W. Z., Tooth P. J., Smith R. C., Scholey J. M. Studies on the effect of phosphorylation of the 20,000 Mr light chain of vertebrate smooth muscle myosin. J Mol Biol. 1983 Mar 25;165(1):139–162. doi: 10.1016/s0022-2836(83)80247-2. [DOI] [PubMed] [Google Scholar]
- Kossmann T., Fürst D., Small J. V. Structural and biochemical analysis of skinned smooth muscle preparations. J Muscle Res Cell Motil. 1987 Apr;8(2):135–144. doi: 10.1007/BF01753989. [DOI] [PubMed] [Google Scholar]
- Matsudaira P. T., Burgess D. R. SDS microslab linear gradient polyacrylamide gel electrophoresis. Anal Biochem. 1978 Jul 1;87(2):386–396. doi: 10.1016/0003-2697(78)90688-7. [DOI] [PubMed] [Google Scholar]
- Moeremans M., Daneels G., Van Dijck A., Langanger G., De Mey J. Sensitive visualization of antigen-antibody reactions in dot and blot immune overlay assays with immunogold and immunogold/silver staining. J Immunol Methods. 1984 Nov 30;74(2):353–360. doi: 10.1016/0022-1759(84)90303-x. [DOI] [PubMed] [Google Scholar]
- Murphy R. A. Filament organization and contractile function in vertebrate smooth muscle. Annu Rev Physiol. 1979;41:737–748. doi: 10.1146/annurev.ph.41.030179.003513. [DOI] [PubMed] [Google Scholar]
- Pollard T. D., Ito S. Cytoplasmic filaments of Amoeba proteus. I. The role of filaments in consistency changes and movement. J Cell Biol. 1970 Aug;46(2):267–289. doi: 10.1083/jcb.46.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rüegg J. C. Smooth muscle tone. Physiol Rev. 1971 Jan;51(1):201–248. doi: 10.1152/physrev.1971.51.1.201. [DOI] [PubMed] [Google Scholar]
- Small J. V. Contractile units in vertebrate smooth muscle cells. Nature. 1974 May 24;249(455):324–327. doi: 10.1038/249324a0. [DOI] [PubMed] [Google Scholar]
- Small J. V., Fürst D. O., De Mey J. Localization of filamin in smooth muscle. J Cell Biol. 1986 Jan;102(1):210–220. doi: 10.1083/jcb.102.1.210. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Small J. V., Squire J. M. Structural basis of contraction in vertebrate smooth muscle. J Mol Biol. 1972 Jun 14;67(1):117–149. doi: 10.1016/0022-2836(72)90390-7. [DOI] [PubMed] [Google Scholar]
- Small J. V. Studies on isolated smooth muscle cells: The contractile apparatus. J Cell Sci. 1977 Apr;24:327–349. doi: 10.1242/jcs.24.1.327. [DOI] [PubMed] [Google Scholar]
- Suzuki H., Onishi H., Takahashi K., Watanabe S. Structure and function of chicken gizzard myosin. J Biochem. 1978 Dec;84(6):1529–1542. doi: 10.1093/oxfordjournals.jbchem.a132278. [DOI] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trybus K. M., Lowey S. Assembly of smooth muscle myosin minifilaments: effects of phosphorylation and nucleotide binding. J Cell Biol. 1987 Dec;105(6 Pt 2):3007–3019. doi: 10.1083/jcb.105.6.3007. [DOI] [PMC free article] [PubMed] [Google Scholar]
