Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1990 Dec 1;111(6):2651–2661. doi: 10.1083/jcb.111.6.2651

The myelin-associated glycoproteins: membrane disposition, evidence of a novel disulfide linkage between immunoglobulin-like domains, and posttranslational palmitylation

PMCID: PMC2116432  PMID: 1703542

Abstract

The myelin-associated glycoproteins (MAG) are members of the immunoglobulin gene superfamily that function in the cell interactions of myelinating glial cells with axons. In this paper, we have characterized the structural features of these proteins. The disposition of MAG in the bilayer as a type 1 integral membrane protein (with an extracellularly disposed amino terminus, single transmembrane segment, and cytoplasmic carboxy terminus) was demonstrated in protease protection studies of MAG cotranslationally inserted into microsomes in vitro and in immunofluorescent studies with site specific antibodies. A genetically engineered MAG cDNA, which lacks the putative membrane spanning segment, was constructed and shown to encode a secreted protein. These results confirm the identify of this hydrophobic sequence as the transmembrane segment. Sequencing of the secreted protein demonstrated the presence of a cleaved signal sequence and the site of signal peptidase cleavage. To characterize the disulfide linkage pattern of the ectodomain, we cleaved MAG with cyanogen bromide and used a panel of antibodies to coprecipitate specific fragments under nonreducing conditions. These studies provide support for a novel disulfide linkage between two of the immunoglobulin domains of the extracellular segment. Finally, we report that MAG is posttranslationally palmitylated via an intramembranous thioester linkage. Based on these studies, we propose a model for the conformation of MAG, including its RGD sequence, which is considered with regard to its function as a cell adhesion molecule.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Afar D. E., Salzer J. L., Roder J., Braun P. E., Bell J. C. Differential phosphorylation of myelin-associated glycoprotein isoforms in cell culture. J Neurochem. 1990 Oct;55(4):1418–1426. doi: 10.1111/j.1471-4159.1990.tb03155.x. [DOI] [PubMed] [Google Scholar]
  2. Agrawal H. C., Agrawal D. Effect of cycloheximide on palmitylation of PO protein of the peripheral nervous system myelin. Biochem J. 1989 Oct 1;263(1):173–177. doi: 10.1042/bj2630173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arquint M., Roder J., Chia L. S., Down J., Wilkinson D., Bayley H., Braun P., Dunn R. Molecular cloning and primary structure of myelin-associated glycoprotein. Proc Natl Acad Sci U S A. 1987 Jan;84(2):600–604. doi: 10.1073/pnas.84.2.600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bizzozero O. A., McGarry J. F., Lees M. B. Acylation of endogenous myelin proteolipid protein with different acyl-CoAs. J Biol Chem. 1987 Feb 15;262(5):2138–2145. [PubMed] [Google Scholar]
  5. Edwards A. M., Braun P. E., Bell J. C. Phosphorylation of myelin-associated glycoprotein in vivo and in vitro occurs only in the cytoplasmic domain of the large isoform. J Neurochem. 1989 Jan;52(1):317–320. doi: 10.1111/j.1471-4159.1989.tb10934.x. [DOI] [PubMed] [Google Scholar]
  6. Fahrig T., Landa C., Pesheva P., Kühn K., Schachner M. Characterization of binding properties of the myelin-associated glycoprotein to extracellular matrix constituents. EMBO J. 1987 Oct;6(10):2875–2883. doi: 10.1002/j.1460-2075.1987.tb02590.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Frail D. E., Braun P. E. Two developmentally regulated messenger RNAs differing in their coding region may exist for the myelin-associated glycoprotein. J Biol Chem. 1984 Dec 10;259(23):14857–14862. [PubMed] [Google Scholar]
  8. Fujita N., Sato S., Kurihara T., Kuwano R., Sakimura K., Inuzuka T., Takahashi Y., Miyatake T. cDNA cloning of mouse myelin-associated glycoprotein: a novel alternative splicing pattern. Biochem Biophys Res Commun. 1989 Dec 29;165(3):1162–1169. doi: 10.1016/0006-291x(89)92724-1. [DOI] [PubMed] [Google Scholar]
  9. Hynes R. O. Integrins: a family of cell surface receptors. Cell. 1987 Feb 27;48(4):549–554. doi: 10.1016/0092-8674(87)90233-9. [DOI] [PubMed] [Google Scholar]
  10. Johnson P. W., Abramow-Newerly W., Seilheimer B., Sadoul R., Tropak M. B., Arquint M., Dunn R. J., Schachner M., Roder J. C. Recombinant myelin-associated glycoprotein confers neural adhesion and neurite outgrowth function. Neuron. 1989 Sep;3(3):377–385. doi: 10.1016/0896-6273(89)90262-6. [DOI] [PubMed] [Google Scholar]
  11. Johnson P. W., Attia J., Richardson C. D., Roder J. C., Dunn R. J. Synthesis of soluble myelin-associated glycoprotein in insect and mammalian cells. Gene. 1989 Apr 30;77(2):287–296. doi: 10.1016/0378-1119(89)90076-0. [DOI] [PubMed] [Google Scholar]
  12. Kaufman J. F., Krangel M. S., Strominger J. L. Cysteines in the transmembrane region of major histocompatibility complex antigens are fatty acylated via thioester bonds. J Biol Chem. 1984 Jun 10;259(11):7230–7238. [PubMed] [Google Scholar]
  13. Kaufman R. J., Murtha P., Davies M. V. Translational efficiency of polycistronic mRNAs and their utilization to express heterologous genes in mammalian cells. EMBO J. 1987 Jan;6(1):187–193. doi: 10.1002/j.1460-2075.1987.tb04737.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kirschmeier P. T., Housey G. M., Johnson M. D., Perkins A. S., Weinstein I. B. Construction and characterization of a retroviral vector demonstrating efficient expression of cloned cDNA sequences. DNA. 1988 Apr;7(3):219–225. doi: 10.1089/dna.1988.7.219. [DOI] [PubMed] [Google Scholar]
  15. Koch N., Hämmerling G. J. Ia-associated invariant chain is fatty acylated before addition of sialic acid. Biochemistry. 1985 Oct 22;24(22):6185–6190. doi: 10.1021/bi00343a023. [DOI] [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Lai C., Brow M. A., Nave K. A., Noronha A. B., Quarles R. H., Bloom F. E., Milner R. J., Sutcliffe J. G. Two forms of 1B236/myelin-associated glycoprotein, a cell adhesion molecule for postnatal neural development, are produced by alternative splicing. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4337–4341. doi: 10.1073/pnas.84.12.4337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lai C., Watson J. B., Bloom F. E., Sutcliffe J. G., Milner R. J. Neural protein 1B236/myelin-associated glycoprotein (MAG) defines a subgroup of the immunoglobulin superfamily. Immunol Rev. 1987 Dec;100:129–151. doi: 10.1111/j.1600-065x.1987.tb00530.x. [DOI] [PubMed] [Google Scholar]
  19. Lisanti M. P., Sargiacomo M., Graeve L., Saltiel A. R., Rodriguez-Boulan E. Polarized apical distribution of glycosyl-phosphatidylinositol-anchored proteins in a renal epithelial cell line. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9557–9561. doi: 10.1073/pnas.85.24.9557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lopata M. A., Cleveland D. W., Sollner-Webb B. High level transient expression of a chloramphenicol acetyl transferase gene by DEAE-dextran mediated DNA transfection coupled with a dimethyl sulfoxide or glycerol shock treatment. Nucleic Acids Res. 1984 Jul 25;12(14):5707–5717. doi: 10.1093/nar/12.14.5707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Martini R., Schachner M. Immunoelectron microscopic localization of neural cell adhesion molecules (L1, N-CAM, and MAG) and their shared carbohydrate epitope and myelin basic protein in developing sciatic nerve. J Cell Biol. 1986 Dec;103(6 Pt 1):2439–2448. doi: 10.1083/jcb.103.6.2439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mostov K. E., Friedlander M., Blobel G. The receptor for transepithelial transport of IgA and IgM contains multiple immunoglobulin-like domains. Nature. 1984 Mar 1;308(5954):37–43. doi: 10.1038/308037a0. [DOI] [PubMed] [Google Scholar]
  23. Nobile-Orazio E., Hays A. P., Latov N., Perman G., Golier J., Shy M. E., Freddo L. Specificity of mouse and human monoclonal antibodies to myelin-associated glycoprotein. Neurology. 1984 Oct;34(10):1336–1342. doi: 10.1212/wnl.34.10.1336. [DOI] [PubMed] [Google Scholar]
  24. Olson E. N., Glaser L., Merlie J. P. Alpha and beta subunits of the nicotinic acetylcholine receptor contain covalently bound lipid. J Biol Chem. 1984 May 10;259(9):5364–5367. [PubMed] [Google Scholar]
  25. Poltorak M., Sadoul R., Keilhauer G., Landa C., Fahrig T., Schachner M. Myelin-associated glycoprotein, a member of the L2/HNK-1 family of neural cell adhesion molecules, is involved in neuron-oligodendrocyte and oligodendrocyte-oligodendrocyte interaction. J Cell Biol. 1987 Oct;105(4):1893–1899. doi: 10.1083/jcb.105.4.1893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Porter S., Glaser L., Bunge R. P. Release of autocrine growth factor by primary and immortalized Schwann cells. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7768–7772. doi: 10.1073/pnas.84.21.7768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Qiu F. H., Ray P., Brown K., Barker P. E., Jhanwar S., Ruddle F. H., Besmer P. Primary structure of c-kit: relationship with the CSF-1/PDGF receptor kinase family--oncogenic activation of v-kit involves deletion of extracellular domain and C terminus. EMBO J. 1988 Apr;7(4):1003–1011. doi: 10.1002/j.1460-2075.1988.tb02907.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Quarles R. H., Pasnak C. F. A rapid procedure for selectively isolating the major glycoprotein from purified rat brain myelin. Biochem J. 1977 Jun 1;163(3):635–637. doi: 10.1042/bj1630635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ruoslahti E., Pierschbacher M. D. New perspectives in cell adhesion: RGD and integrins. Science. 1987 Oct 23;238(4826):491–497. doi: 10.1126/science.2821619. [DOI] [PubMed] [Google Scholar]
  30. Sadoul R., Fahrig T., Bartsch U., Schachner M. Binding properties of liposomes containing the myelin-associated glycoprotein MAG to neural cell cultures. J Neurosci Res. 1990 Jan;25(1):1–13. doi: 10.1002/jnr.490250102. [DOI] [PubMed] [Google Scholar]
  31. Salzer J. L., Colman D. R. Mechanisms of cell adhesion in the nervous system: role of the immunoglobulin gene superfamily. Dev Neurosci. 1989;11(6):377–390. doi: 10.1159/000111914. [DOI] [PubMed] [Google Scholar]
  32. Salzer J. L., Holmes W. P., Colman D. R. The amino acid sequences of the myelin-associated glycoproteins: homology to the immunoglobulin gene superfamily. J Cell Biol. 1987 Apr;104(4):957–965. doi: 10.1083/jcb.104.4.957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Salzer J. L., Pedraza L., Brown M., Struyk A., Afar D., Bell J. Structure and function of the myelin-associated glycoproteins. Ann N Y Acad Sci. 1990;605:302–312. doi: 10.1111/j.1749-6632.1990.tb42404.x. [DOI] [PubMed] [Google Scholar]
  34. Sato S., Fujita N., Kurihara T., Kuwano R., Sakimura K., Takahashi Y., Miyatake T. cDNA cloning and amino acid sequence for human myelin-associated glycoprotein. Biochem Biophys Res Commun. 1989 Sep 29;163(3):1473–1480. doi: 10.1016/0006-291x(89)91145-5. [DOI] [PubMed] [Google Scholar]
  35. Schmidt J. W., Catterall W. A. Palmitylation, sulfation, and glycosylation of the alpha subunit of the sodium channel. Role of post-translational modifications in channel assembly. J Biol Chem. 1987 Oct 5;262(28):13713–13723. [PubMed] [Google Scholar]
  36. Schmidt M. F., Schlesinger M. J. Relation of fatty acid attachment to the translation and maturation of vesicular stomatitis and Sindbis virus membrane glycoproteins. J Biol Chem. 1980 Apr 25;255(8):3334–3339. [PubMed] [Google Scholar]
  37. Simmons D., Seed B. Isolation of a cDNA encoding CD33, a differentiation antigen of myeloid progenitor cells. J Immunol. 1988 Oct 15;141(8):2797–2800. [PubMed] [Google Scholar]
  38. Spagnol G., Williams M., Srinivasan J., Golier J., Bauer D., Lebo R. V., Latov N. Molecular cloning of human myelin-associated glycoprotein. J Neurosci Res. 1989 Oct;24(2):137–142. doi: 10.1002/jnr.490240203. [DOI] [PubMed] [Google Scholar]
  39. Stamenkovic I., Seed B. The B-cell antigen CD22 mediates monocyte and erythrocyte adhesion. Nature. 1990 May 3;345(6270):74–77. doi: 10.1038/345074a0. [DOI] [PubMed] [Google Scholar]
  40. Staunton D. E., Marlin S. D., Stratowa C., Dustin M. L., Springer T. A. Primary structure of ICAM-1 demonstrates interaction between members of the immunoglobulin and integrin supergene families. Cell. 1988 Mar 25;52(6):925–933. doi: 10.1016/0092-8674(88)90434-5. [DOI] [PubMed] [Google Scholar]
  41. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Towler D. A., Gordon J. I., Adams S. P., Glaser L. The biology and enzymology of eukaryotic protein acylation. Annu Rev Biochem. 1988;57:69–99. doi: 10.1146/annurev.bi.57.070188.000441. [DOI] [PubMed] [Google Scholar]
  43. Trapp B. D. Distribution of the myelin-associated glycoprotein and P0 protein during myelin compaction in quaking mouse peripheral nerve. J Cell Biol. 1988 Aug;107(2):675–685. doi: 10.1083/jcb.107.2.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Trapp B. D., Quarles R. H. Presence of the myelin-associated glycoprotein correlates with alterations in the periodicity of peripheral myelin. J Cell Biol. 1982 Mar;92(3):877–882. doi: 10.1083/jcb.92.3.877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Wigler M., Silverstein S., Lee L. S., Pellicer A., Cheng Y. c., Axel R. Transfer of purified herpes virus thymidine kinase gene to cultured mouse cells. Cell. 1977 May;11(1):223–232. doi: 10.1016/0092-8674(77)90333-6. [DOI] [PubMed] [Google Scholar]
  46. Williams A. F., Barclay A. N. The immunoglobulin superfamily--domains for cell surface recognition. Annu Rev Immunol. 1988;6:381–405. doi: 10.1146/annurev.iy.06.040188.002121. [DOI] [PubMed] [Google Scholar]
  47. Williams A. F., Davis S. J., He Q., Barclay A. N. Structural diversity in domains of the immunoglobulin superfamily. Cold Spring Harb Symp Quant Biol. 1989;54(Pt 2):637–647. doi: 10.1101/sqb.1989.054.01.075. [DOI] [PubMed] [Google Scholar]
  48. von Heijne G. Patterns of amino acids near signal-sequence cleavage sites. Eur J Biochem. 1983 Jun 1;133(1):17–21. doi: 10.1111/j.1432-1033.1983.tb07424.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES