Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1990 Dec 1;111(6):2663–2671. doi: 10.1083/jcb.111.6.2663

Schwann cell proliferation in vitro is under negative autocrine control

PMCID: PMC2116433  PMID: 2277078

Abstract

In healthy adult peripheral nerve, Schwann cells are believed to be generally quiescent. Similarly, cultures of isolated rat sciatic nerve Schwann cells hardly proliferate in serum-supplemented medium. The possibility that Schwann cells negatively regulate their own proliferation was supported by the demonstration that conditioned media from Schwann cell cultures inhibited the proliferation of mitogen- stimulated test cultures. The inhibition could be complete, was dose dependent, and was exhibited when the test Schwann cells were under the influence of different types of mitogens such as cholera toxin, laminin, and living neurons. The inhibition of proliferation was completely reversible and a rapid doubling of cell number resulted when treatment with conditioned medium was withdrawn from mitogen-stimulated Schwann cells. Conditioned medium from cholera toxin-stimulated and immortalized Schwann cell cultures contained less antiproliferative activity than that found in medium from quiescent Schwann cell cultures. However, media conditioned by two actively proliferating rat Schwannoma cell lines were rich sources of antiproliferative activity for Schwann cells. Unlike the mitogen-stimulated Schwann cells, whose proliferation could be inhibited completely, the immortalized and transformed Schwann cell types were nearly unresponsive to the antiproliferative activity. The antiproliferative activity in Schwann and Schwannoma cell conditioned media was submitted to gel filtration and SDS-PAGE. The activity exists in at least two distinct forms: (a) a high molecular weight complex with an apparent molecular mass greater than 1,000 kD, and (b) a lower molecular weight form having a molecular mass of 55 kD. The active 55-kD form could be derived from the high molecular weight form by gel filtration performed under dissociating conditions. The 55-kD form was further purified to electrophoretic homogeneity. These results suggest that Schwann cells produce an autocrine factor, which we designate as a "neural antiproliferative protein," which completely inhibits the in vitro proliferation of Schwann cells but not that of immortalized Schwann cells or Schwannoma lines.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bansal R., Pfeiffer S. E. Regulated galactolipid synthesis and cell surface expression in Schwann cell line D6P2T. J Neurochem. 1987 Dec;49(6):1902–1911. doi: 10.1111/j.1471-4159.1987.tb02453.x. [DOI] [PubMed] [Google Scholar]
  2. Bosch E. P., Assouline J. G., Miller J. F., Lim R. Glia maturation factor promotes proliferation and morphologic expression of rat Schwann cells. Brain Res. 1984 Jun 25;304(2):311–319. doi: 10.1016/0006-8993(84)90335-4. [DOI] [PubMed] [Google Scholar]
  3. Brockes J. P., Fields K. L., Raff M. C. Studies on cultured rat Schwann cells. I. Establishment of purified populations from cultures of peripheral nerve. Brain Res. 1979 Apr 6;165(1):105–118. doi: 10.1016/0006-8993(79)90048-9. [DOI] [PubMed] [Google Scholar]
  4. DeVries G. H., Minier L. N., Lewis B. L. Further studies on the mitogenic response of cultured Schwann cells to rat CNS axolemma-enriched fractions. Brain Res. 1983 Jul;285(1):87–93. doi: 10.1016/0165-3806(83)90112-8. [DOI] [PubMed] [Google Scholar]
  5. Dziadek M., Edgar D., Paulsson M., Timpl R., Fleischmajer R. Basement membrane proteins produced by Schwann cells and in neurofibromatosis. Ann N Y Acad Sci. 1986;486:248–259. doi: 10.1111/j.1749-6632.1986.tb48078.x. [DOI] [PubMed] [Google Scholar]
  6. Eccleston P. A., Mirsky R., Jessen K. R. Type I collagen preparations inhibit DNA synthesis in glial cells of the peripheral nervous system. Exp Cell Res. 1989 May;182(1):173–185. doi: 10.1016/0014-4827(89)90289-9. [DOI] [PubMed] [Google Scholar]
  7. Engvall E., Krusius T., Wewer U., Ruoslahti E. Laminin from rat yolk sac tumor: isolation, partial characterization, and comparison with mouse laminin. Arch Biochem Biophys. 1983 Apr 15;222(2):649–656. doi: 10.1016/0003-9861(83)90562-3. [DOI] [PubMed] [Google Scholar]
  8. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  9. Lim R., Hicklin D. J., Ryken T. C., Miller J. F., Bosch E. P. Endogenous immunoreactive glia maturation factor-like molecule in cultured rat Schwann cells. Brain Res. 1988 May 16;468(2):277–284. doi: 10.1016/0165-3806(88)90140-x. [DOI] [PubMed] [Google Scholar]
  10. Manthorpe M., Skaper S., Varon S. Purification of mouse Schwann cells using neurite-induced proliferation in serum-free monolayer culture. Brain Res. 1980 Sep 8;196(2):467–482. doi: 10.1016/0006-8993(80)90410-2. [DOI] [PubMed] [Google Scholar]
  11. McCarthy K. D., de Vellis J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol. 1980 Jun;85(3):890–902. doi: 10.1083/jcb.85.3.890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. McGarvey M. L., Baron-Van Evercooren A., Kleinman H. K., Dubois-Dalcq M. Synthesis and effects of basement membrane components in cultured rat Schwann cells. Dev Biol. 1984 Sep;105(1):18–28. doi: 10.1016/0012-1606(84)90257-4. [DOI] [PubMed] [Google Scholar]
  13. Muir D., Engvall E., Varon S., Manthorpe M. Schwannoma cell-derived inhibitor of the neurite-promoting activity of laminin. J Cell Biol. 1989 Nov;109(5):2353–2362. doi: 10.1083/jcb.109.5.2353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Muir D., Gennrich C., Varon S., Manthorpe M. Rat sciatic nerve Schwann cell microcultures: responses to mitogens and production of trophic and neurite-promoting factors. Neurochem Res. 1989 Oct;14(10):1003–1012. doi: 10.1007/BF00965935. [DOI] [PubMed] [Google Scholar]
  15. Muir D., Varon S., Manthorpe M. An enzyme-linked immunosorbent assay for bromodeoxyuridine incorporation using fixed microcultures. Anal Biochem. 1990 Mar;185(2):377–382. doi: 10.1016/0003-2697(90)90310-6. [DOI] [PubMed] [Google Scholar]
  16. Pfeiffer S. E., Wechsler W. Biochemically differentiated neoplastic clone of Schwann cells. Proc Natl Acad Sci U S A. 1972 Oct;69(10):2885–2889. doi: 10.1073/pnas.69.10.2885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Porter S., Clark M. B., Glaser L., Bunge R. P. Schwann cells stimulated to proliferate in the absence of neurons retain full functional capability. J Neurosci. 1986 Oct;6(10):3070–3078. doi: 10.1523/JNEUROSCI.06-10-03070.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Porter S., Glaser L., Bunge R. P. Release of autocrine growth factor by primary and immortalized Schwann cells. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7768–7772. doi: 10.1073/pnas.84.21.7768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ratner N., Bunge R. P., Glaser L. Schwann cell proliferation in vitro. An overview. Ann N Y Acad Sci. 1986;486:170–181. doi: 10.1111/j.1749-6632.1986.tb48072.x. [DOI] [PubMed] [Google Scholar]
  20. Ridley A. J., Paterson H. F., Noble M., Land H. Ras-mediated cell cycle arrest is altered by nuclear oncogenes to induce Schwann cell transformation. EMBO J. 1988 Jun;7(6):1635–1645. doi: 10.1002/j.1460-2075.1988.tb02990.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rudge J. S., Manthorpe M., Varon S. The output of neuronotrophic and neurite-promoting agents from rat brain astroglial cells: a microculture method for screening potential regulatory molecules. Brain Res. 1985 Apr;351(2):161–172. doi: 10.1016/0165-3806(85)90188-9. [DOI] [PubMed] [Google Scholar]
  22. Salzer J. L., Bunge R. P., Glaser L. Studies of Schwann cell proliferation. III. Evidence for the surface localization of the neurite mitogen. J Cell Biol. 1980 Mar;84(3):767–778. doi: 10.1083/jcb.84.3.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Salzer J. L., Bunge R. P. Studies of Schwann cell proliferation. I. An analysis in tissue culture of proliferation during development, Wallerian degeneration, and direct injury. J Cell Biol. 1980 Mar;84(3):739–752. doi: 10.1083/jcb.84.3.739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Steck P. A., Voss P. G., Wang J. L. Growth control in cultured 3T3 fibroblasts. Assays of cell proliferation and demonstration of a growth inhibitory activity. J Cell Biol. 1979 Dec;83(3):562–575. doi: 10.1083/jcb.83.3.562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wood P. M. Separation of functional Schwann cells and neurons from normal peripheral nerve tissue. Brain Res. 1976 Oct 22;115(3):361–375. doi: 10.1016/0006-8993(76)90355-3. [DOI] [PubMed] [Google Scholar]
  27. Yamaguchi Y., Ruoslahti E. Expression of human proteoglycan in Chinese hamster ovary cells inhibits cell proliferation. Nature. 1988 Nov 17;336(6196):244–246. doi: 10.1038/336244a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES