Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1988 Dec;170(12):5883–5889. doi: 10.1128/jb.170.12.5883-5889.1988

Cysteine biosynthesis in Saccharomyces cerevisiae: mutation that confers cystathionine beta-synthase deficiency.

B Ono 1, Y Shirahige 1, A Nanjoh 1, N Andou 1, H Ohue 1, Y Ishino-Arao 1
PMCID: PMC211696  PMID: 3056921

Abstract

The cys2-1 mutation of Saccharomyces cerevisiae was originally thought to confer cysteine dependence through a serine O-acetyltransferase deficiency. In this study, we show that cys2-1 strains lack not only serine O-acetyltransferase but also cystathionine beta-synthase. However, a prototrophic strain was found to be serine O-acetyltransferase deficient because of a mutation allelic to cys2-1. Moreover, revertants obtained from cys2-1 strains had serine O-acetyltransferase but not cystathionine beta-synthase, whereas transformants obtained by treating a cys2-1 strain with an S. cerevisiae genomic library had cystathionine beta-synthase but not serine O-acetyltransferase. From these observations, we conclude that cys2-1 (serine O-acetyltransferase deficiency) accompanies a very closely linked mutation that causes cystathionine beta-synthase deficiency and that these mutations together confer cysteine dependence. This newly identified mutation is named cys4-1. These results not only support our previous hypothesis that S. cerevisiae has two functional cysteine biosynthetic pathways but also reveal an interesting gene arrangement of the cysteine biosynthetic system.

Full text

PDF
5883

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Braunstein A. E., Goryachenkova E. V., Tolosa E. A., Willhardt I. H., Yefremova L. L. Specificity and some other properties of liver serine sulphhydrase: evidence for its identity with cystathionine -synthase. Biochim Biophys Acta. 1971 Jul 21;242(1):247–260. doi: 10.1016/0005-2744(71)90105-7. [DOI] [PubMed] [Google Scholar]
  2. D'Andrea R., Surdin-Kerjan Y., Pure G., Cherest H. Molecular genetics of met 17 and met 25 mutants of Saccharomyces cerevisiae: intragenic complementation between mutations of a single structural gene. Mol Gen Genet. 1987 Apr;207(1):165–170. doi: 10.1007/BF00331505. [DOI] [PubMed] [Google Scholar]
  3. DELAVIER-KLUTCHKO C., FLAVIN M. ENZYMATIC SYNTHESIS AND CLEAVAGE OF CYSTATHIONINE IN FUNGI AND BACTERIA. J Biol Chem. 1965 Jun;240:2537–2549. [PubMed] [Google Scholar]
  4. Ebner E., Mason T. L., Schatz G. Mitochondrial assembly in respiration-deficient mutants of Saccharomyces cerevisiae. II. Effect of nuclear and extrachromosomal mutations on the formation of cytochrome c oxidase. J Biol Chem. 1973 Aug 10;248(15):5369–5378. [PubMed] [Google Scholar]
  5. Gaitonde M. K. A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. Biochem J. 1967 Aug;104(2):627–633. doi: 10.1042/bj1040627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Giovanelli J., Mudd S. H., Datko A. H. Homocysteine biosynthesis in green plants. Physiological importance of the transsulfuration pathway in Chlorella sorokiniana growing under steady state conditions with limiting sulfate. J Biol Chem. 1978 Aug 25;253(16):5665–5677. [PubMed] [Google Scholar]
  7. Ito H., Fukuda Y., Murata K., Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol. 1983 Jan;153(1):163–168. doi: 10.1128/jb.153.1.163-168.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kashiwamata S., Greenberg D. M. Studies on cystathionine synthase of rat liver. Properties of the highly purified enzyme. Biochim Biophys Acta. 1970 Sep 16;212(3):488–500. doi: 10.1016/0005-2744(70)90255-x. [DOI] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Masselot M., De Robichon-Szulmajster H. Methionine biosynthesis in Saccharomyces cerevisiae. I. Genetical analysis of auxotrophic mutants. Mol Gen Genet. 1975 Aug 5;139(2):121–132. doi: 10.1007/BF00264692. [DOI] [PubMed] [Google Scholar]
  11. Mortimer R. K., Schild D. Genetic map of Saccharomyces cerevisiae, edition 9. Microbiol Rev. 1985 Sep;49(3):181–213. doi: 10.1128/mr.49.3.181-213.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Morzycka E., Paszewski A. Two pathways of cysteine biosynthesis in Saccharomycopsis lipolytica. FEBS Lett. 1979 May 1;101(1):97–100. doi: 10.1016/0014-5793(79)81302-2. [DOI] [PubMed] [Google Scholar]
  13. Ohya Y., Miyamoto S., Ohsumi Y., Anraku Y. Calcium-sensitive cls4 mutant of Saccharomyces cerevisiae with a defect in bud formation. J Bacteriol. 1986 Jan;165(1):28–33. doi: 10.1128/jb.165.1.28-33.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ono B., Suruga T., Yamamoto M., Yamamoto S., Murata K., Kimura A., Shinoda S., Ohmori S. Cystathionine accumulation in Saccharomyces cerevisiae. J Bacteriol. 1984 Jun;158(3):860–865. doi: 10.1128/jb.158.3.860-865.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ozaki H., Shiio I. Methionine biosynthesis in Brevibacterium flavum: properties and essential role of O-acetylhomoserine sulfhydrylase. J Biochem. 1982 Apr;91(4):1163–1171. doi: 10.1093/oxfordjournals.jbchem.a133799. [DOI] [PubMed] [Google Scholar]
  16. Paszewski A., Grabski J. Enzymatic lesions in methionine mutants of Aspergillus nidulans: role and regulation of an alternative pathway for cysteine and methionine synthesis. J Bacteriol. 1975 Nov;124(2):893–904. doi: 10.1128/jb.124.2.893-904.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pieniazek N., Stepień P. P., Paszewski A. An Aspergillus nidulans mutant lacking cystathionine -synthase: identity of L-serine sulfhydrylase with cystathionine -synthase and its distinctness from O-acetyl-L-serine sulfhydrylase. Biochim Biophys Acta. 1973 Jan 24;297(1):37–47. doi: 10.1016/0304-4165(73)90047-0. [DOI] [PubMed] [Google Scholar]
  18. SCHLOSSMANN K., LYNEN F. Biosynthese des Cysteins aus Serin und Schwefelwasserstoff. Biochem Z. 1957;328(7):591–594. [PubMed] [Google Scholar]
  19. SHERMAN F. MUTANTS OF YEAST DEFICIENT IN CYTOCHROME C. Genetics. 1964 Jan;49:39–48. doi: 10.1093/genetics/49.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sangsoda S., Cherest H., Surdin-Kerjan Y. The expression of the MET25 gene of Saccharomyces cerevisiae is regulated transcriptionally. Mol Gen Genet. 1985;200(3):407–414. doi: 10.1007/BF00425724. [DOI] [PubMed] [Google Scholar]
  21. Savin M. A., Flavin M. Cystationine synthesis in yeast: an alternative pathway for homocysteine biosynthesis. J Bacteriol. 1972 Oct;112(1):299–303. doi: 10.1128/jb.112.1.299-303.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wickerham L. J. A Critical Evaluation of the Nitrogen Assimilation Tests Commonly Used in the Classification of Yeasts. J Bacteriol. 1946 Sep;52(3):293–301. [PMC free article] [PubMed] [Google Scholar]
  23. Wiebers J. L., Garner H. R. Acyl derivatives of homoserine as substrates for homocysteine synthesis in Neurospora crassa, yeast, and Escherichia coli. J Biol Chem. 1967 Dec 10;242(23):5644–5649. [PubMed] [Google Scholar]
  24. Yamagata S., Takeshima K., Naiki N. O-acetylserine and O-acetylhomoserine sulfhydrylase of yeast; studies with methionine auxotrophs. J Biochem. 1975 May;77(5):1029–1036. doi: 10.1093/oxfordjournals.jbchem.a130803. [DOI] [PubMed] [Google Scholar]
  25. Yamagata S., Takeshima K. O-Acetylserine and O-acetylhomoserine sulfhydrylase of yeast. Further purification and characterization as a pyridoxal enzyme. J Biochem. 1976 Oct;80(4):777–785. doi: 10.1093/oxfordjournals.jbchem.a131338. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES