Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1988 Dec;170(12):5895–5900. doi: 10.1128/jb.170.12.5895-5900.1988

Bacteria of the genus Bacillus have a hydrolase stereospecific to the D isomer of benzoyl-arginine-p-nitroanilide.

L V Gofshtein-Gandman 1, A Keynan 1, Y Milner 1
PMCID: PMC211698  PMID: 3142860

Abstract

A stereospecific enzyme activity capable of cleaving the amide bond of the synthetic substrate N-benzoyl-D-arginine-p-nitroanilide (D-BAPA) has been found in all aerobic and anaerobic members of the family Bacillaceae tested by us. Cells of nonsporeforming gram-positive or gram-negative bacteria contain a hydrolase activity stereospecific to N-benzoyl-L-arginine-p-nitroanilide. The D-BAPA-hydrolyzing enzymes (D-BAPAases) of mid-logarithmic-phase cells of Bacillus subtilis 168 and B. cereus T were compared. These enzymes had the same molecular weight of approximately 66,000 in gel filtration and the same electrophoretic mobility after electrophoresis on polyacrylamide gels. The D-BAPAases of B. subtilis 168 and B. cereus T differed in the effect of inhibitors on enzymatic activity. While both hydrolases were inhibited by tosyl-L-lysine chloromethyl ketone and tosyl-L-arginine-methyl ester as well as leupeptin, only the D-BAPAase of B. cereus T was inhibited by p-chloromercuribenzene sulfonic acid. The D-BAPAases of B. subtilis and B. cereus T had a Michaelis constant for D-BAPA of 2.9 x 10(-5) M and 1.4 x 10(-4) M, respectively. D-BAPAase is an intracellular enzyme localized in the protoplast (80 to 90% in soluble form in the cytoplasm). The ability to cleave D-BAPA is suggested as an additional chemotaxonomic characteristic of sporeforming bacteria of the genera Bacillus and Clostridium.

Full text

PDF
5895

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BADDILEY J., NEUHAUS F. C. The enzymic activation of D-alanine. Biochem J. 1960 Jun;75:579–587. doi: 10.1042/bj0750579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boschwitz H., Halvorson H. O., Keynan A., Milner Y. Trypsinlike enzymes from dormant and germinated spores of Bacillus cereus T and their possible involvement in germination. J Bacteriol. 1985 Oct;164(1):302–309. doi: 10.1128/jb.164.1.302-309.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. CHIBNALL A. C., REES M. W., RICHARDS F. M. Structure of the polyglutamic acid from Bacillus subtilis. Biochem J. 1958 Jan;68(1):129–135. doi: 10.1042/bj0680129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Caldwell J. B., Sparrow L. G. Partial purification and characterization of two Peptide hydrolases from pea seeds. Plant Physiol. 1976 May;57(5):795–798. doi: 10.1104/pp.57.5.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cameron E. C., Mazelis M. A Nonproteolytic "Trypsin-like" Enzyme: Purification and Properties of Arachain. Plant Physiol. 1971 Sep;48(3):278–281. doi: 10.1104/pp.48.3.278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Doi M., Shioi Y., Sasa T. Purification and characterization of benzoyl-L-arginine p-nitroanilide hydrolase from etiolated leaves of Zea mays. Arch Biochem Biophys. 1986 Nov 1;250(2):358–363. doi: 10.1016/0003-9861(86)90737-x. [DOI] [PubMed] [Google Scholar]
  8. ERLANGER B. F., KOKOWSKY N., COHEN W. The preparation and properties of two new chromogenic substrates of trypsin. Arch Biochem Biophys. 1961 Nov;95:271–278. doi: 10.1016/0003-9861(61)90145-x. [DOI] [PubMed] [Google Scholar]
  9. Fujimura S., Nakamura T., Pulverer G. Isolation and characterization of a peptidase from an oral strain of Corynebacterium matruchotii. Zentralbl Bakteriol Mikrobiol Hyg A. 1986 Apr;261(2):133–139. doi: 10.1016/s0176-6724(86)80028-1. [DOI] [PubMed] [Google Scholar]
  10. GOLLAKOTA K. G., HALVORSON H. O. Biochemical changes occurring during sporulation of Bacillus cereus. Inhibition of sporulation by alpha-picolinic acid. J Bacteriol. 1960 Jan;79:1–8. doi: 10.1128/jb.79.1.1-8.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hederstedt L., Rutberg L. Orientation of succinate dehydrogenase and cytochrome b558 in the Bacillus subtilis cytoplasmic membrane. J Bacteriol. 1983 Jan;153(1):57–65. doi: 10.1128/jb.153.1.57-65.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hoagland R. E., Graf G. The purification and properties of an amidohydrolase from soybean. Can J Biochem. 1974 Oct;52(10):903–910. doi: 10.1139/o74-127. [DOI] [PubMed] [Google Scholar]
  13. Jones W. M., Soper T. S., Ueno H., Manning J. M. D-Glutamate-D-amino acid transaminase from bacteria. Methods Enzymol. 1985;113:108–113. doi: 10.1016/s0076-6879(85)13024-7. [DOI] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Sharpe A., Blumberg P. M., Strominger J. L. D-alanine carboxypeptidase and cell wall cross-linking in Bacillus subtilis. J Bacteriol. 1974 Feb;117(2):926–927. doi: 10.1128/jb.117.2.926-927.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Zenk M. H., Schmitt J. H. Reinigung und Eigenschaften von Acetyl-CoA: D-Aminosäure-alpha-N-Acetyltransferase aus Hefe. Biochem Z. 1965 Jun 3;342(1):54–65. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES